MoveNet Single Pose on DepthAI 项目教程

MoveNet Single Pose on DepthAI 项目教程

depthai_movenet MoveNet Single Pose on DepthAI 项目地址: https://gitcode.com/gh_mirrors/de/depthai_movenet

1. 项目介绍

depthai_movenet 是一个在 DepthAI 硬件(如 OAK-1, OAK-D)上运行 Google MoveNet 单人姿态估计模型的开源项目。MoveNet 是一个卷积神经网络模型,能够处理 RGB 图像并预测单个人的关节位置。该项目提供了两种变体:Lightning 和 Thunder,其中 Thunder 更慢但更准确。MoveNet 使用基于前一帧检测结果的智能裁剪技术,使得模型能够在不牺牲速度的情况下提高预测质量。

2. 项目快速启动

安装依赖

首先,确保你已经安装了 Python 3。然后,使用以下命令安装所需的 Python 包:

python3 -m pip install -r requirements.txt

运行示例

以下是一些快速启动的示例代码:

在 Host 模式下运行 Thunder 模型
python3 demo.py
在 Edge 模式下运行 Thunder 模型
python3 demo.py -e
运行 Lightning 模型
python3 demo.py -m lightning
使用视频文件作为输入
python3 demo.py -i filename
调整内部相机 FPS
python3 demo.py -f 15

3. 应用案例和最佳实践

应用案例

  1. 人体姿态估计:MoveNet 可以用于实时人体姿态估计,适用于健身、舞蹈、体育等场景。
  2. 动作识别:结合其他算法,MoveNet 可以用于识别特定的动作,如瑜伽、体操等。
  3. 远程医疗:通过检测患者的姿态,MoveNet 可以辅助远程医疗诊断。

最佳实践

  1. 优化 FPS:根据硬件性能调整内部相机的 FPS,以达到最佳的性能和准确性。
  2. 自定义渲染:通过修改 MovenetRenderer 类,可以自定义姿态估计结果的显示方式。
  3. 模型选择:根据应用场景选择 Lightning 或 Thunder 模型,Lightning 速度更快,Thunder 准确性更高。

4. 典型生态项目

  1. DepthAIdepthai_movenet 项目依赖于 DepthAI 硬件,DepthAI 提供了丰富的硬件支持和开发工具。
  2. OpenVINO:MoveNet 也可以在 OpenVINO 上运行,OpenVINO 提供了高效的推理引擎,适用于边缘计算场景。
  3. TensorFlow.js:MoveNet 最初是为 TensorFlow.js 设计的,TensorFlow.js 提供了在浏览器中运行深度学习模型的能力。

通过以上模块的介绍,你可以快速上手 depthai_movenet 项目,并在实际应用中发挥其强大的功能。

depthai_movenet MoveNet Single Pose on DepthAI 项目地址: https://gitcode.com/gh_mirrors/de/depthai_movenet

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缪昱锨Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值