PSFusion:重塑高层次视觉任务中的图像融合技术

PSFusion:重塑高层次视觉任务中的图像融合技术

【免费下载链接】PSFusion This is official Pytorch implementation of "Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity" 【免费下载链接】PSFusion 项目地址: https://gitcode.com/gh_mirrors/ps/PSFusion

项目介绍

PSFusion 是一个基于 PyTorch 的开源项目,旨在重新思考高层次视觉任务中图像融合的必要性。该项目提出了一种实用的红外和可见光图像融合网络,通过渐进式语义注入和场景保真度来提升图像融合的效果。PSFusion 的核心思想是通过图像级别的融合来替代传统的特征级别融合,从而在高层次视觉任务中实现更高效和更准确的图像处理。

项目技术分析

框架结构

PSFusion 的整体框架如下图所示:

Framework

该框架主要包括两个关键模块:

  1. 表面细节融合模块(SDFM):基于通道-空间注意力机制,用于提取和融合图像的表面细节。
  2. 深层语义融合模块(PSFM):基于交叉注意力机制,用于提取和融合图像的深层语义信息。

推荐环境

为了顺利运行 PSFusion,建议使用以下环境配置:

  • torch 1.10.0
  • cudatoolkit 11.3.1
  • torchvision 0.11.0
  • kornia 0.6.5
  • pillow 8.3.2

训练与测试

  • 测试:下载预训练模型和数据集,运行 test_Fusion.py 脚本即可进行测试。
  • 训练:下载预处理后的 MSRS 数据集,运行 train.py 脚本即可开始训练。

项目及技术应用场景

PSFusion 适用于多种高层次视觉任务,特别是在以下场景中表现尤为突出:

  • 红外与可见光图像融合:在低光照或恶劣天气条件下,红外图像和可见光图像的融合可以提供更全面和清晰的视觉信息。
  • 语义分割:通过图像级别的融合,PSFusion 可以显著提升语义分割任务的准确性和效率。
  • 场景理解:在自动驾驶、安防监控等领域,PSFusion 可以帮助系统更好地理解复杂场景,提高决策的可靠性。

项目特点

1. 渐进式语义注入

PSFusion 通过渐进式语义注入的方式,逐步融合图像的表面细节和深层语义信息,确保融合后的图像既保留了细节的清晰度,又具备了深层次的语义理解。

2. 场景保真度

项目引入了场景保真度机制,确保融合后的图像在视觉上与原始场景保持一致,避免了传统融合方法中常见的失真问题。

3. 高效计算

相比于传统的特征级别融合,PSFusion 在图像级别进行融合,显著降低了计算复杂度,提高了处理效率。

4. 广泛适用性

PSFusion 不仅适用于红外与可见光图像的融合,还可以扩展到其他多模态图像融合任务,具有广泛的适用性和灵活性。

结语

PSFusion 通过创新的图像融合技术,为高层次视觉任务提供了新的解决方案。无论是在学术研究还是实际应用中,PSFusion 都展现出了巨大的潜力。如果你正在寻找一种高效、准确的图像融合方法,PSFusion 绝对值得一试。

立即访问 PSFusion GitHub 仓库,体验这一前沿技术的魅力吧!

【免费下载链接】PSFusion This is official Pytorch implementation of "Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity" 【免费下载链接】PSFusion 项目地址: https://gitcode.com/gh_mirrors/ps/PSFusion

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值