深入UFO²架构:HostAgent与AppAgent协同工作机制

深入UFO²架构:HostAgent与AppAgent协同工作机制

【免费下载链接】UFO 【免费下载链接】UFO 项目地址: https://gitcode.com/gh_mirrors/uf/UFO

UFO²架构是一个先进的多智能体系统,通过HostAgent与AppAgent的协同工作实现复杂的桌面自动化任务。HostAgent作为核心协调者,负责用户意图理解、任务分解、应用调度和全局状态管理;而AppAgent则作为具体执行者,基于ReAct循环和多模态感知能力与Windows应用程序进行交互。系统通过精密的有限状态机(FSM)架构、共享内存模型(Blackboard机制)和上下文同步机制实现智能体间的无缝协作,确保任务执行的可靠性、可维护性和扩展性。

HostAgent的角色与任务解析流程

在UFO²架构中,HostAgent作为整个系统的核心协调者,承担着用户意图理解、任务分解、应用调度和全局状态管理的核心职责。其任务解析流程体现了高度智能化的多模态感知与决策能力。

HostAgent的核心职责体系

HostAgent通过精心设计的职责体系来确保整个自动化流程的顺畅执行:

职责模块功能描述关键技术
意图理解解析用户自然语言请求,识别核心任务目标多模态LLM推理、上下文分析
任务分解将复杂任务拆分为可执行的原子子任务分层任务规划、依赖关系分析
应用调度识别并启动所需应用程序,分配AppAgent窗口检测、进程管理
状态管理维护全局有限状态机,协调多Agent协作FSM状态机、黑板机制
知识整合整合离线文档、在线搜索和执行轨迹知识RAG检索、向量数据库

多模态任务解析流程

HostAgent的任务解析遵循一个严谨的多步骤流程,确保对用户请求的全面理解和精确执行:

mermaid

1. 环境感知与信息采集

HostAgent首先通过多模态感知系统收集执行环境信息:

# 桌面屏幕截图捕获
desktop_save_path = self.log_path + f"action_step{self.session_step}.png"
self.photographer.capture_desktop_screen_screenshot(
    all_screens=True, save_path=desktop_save_path
)

# 窗口控件信息提取
self._desktop_windows_dict = self.control_inspector.get_desktop_app_dict(
    remove_empty=True
)
self._desktop_windows_info = self.control_inspector.get_desktop_app_info(
    self._desktop_windows_dict
)

这个过程生成的关键信息包括:

  • 全屏桌面截图(Base64编码)
  • 所有可用窗口的层次结构信息
  • 应用程序进程名称和根窗口标识
  • 当前活跃的控件状态
2. 多模态提示词构建

基于收集的环境信息,HostAgent构建包含视觉和文本信息的综合提示词:

def message_constructor(self, image_list, os_info, plan, prev_subtask, request, blackboard_prompt):
    hostagent_prompt_system_message = self.prompter.system_prompt_construction()
    hostagent_prompt_user_message = self.prompter.user_content_construction(
        image_list=image_list,
        control_item=os_info,
        prev_subtask=prev_subtask,
        prev_plan=plan,
        user_request=request,
    )
    
    if blackboard_prompt:
        hostagent_prompt_user_message = blackboard_prompt + hostagent_prompt_user_message
        
    return self.prompter.prompt_construction(
        hostagent_prompt_system_message, hostagent_prompt_user_message
    )

提示词结构包含以下关键组件:

  • 系统指令:定义HostAgent的角色和职责范围
  • 视觉上下文:桌面截图提供环境视觉信息
  • 控件信息:所有可用窗口的文本描述
  • 历史上下文:先前执行的子任务和计划
  • 黑板知识:从RAG系统检索的相关知识
  • 用户请求:需要解析的自然语言任务
3. LLM推理与响应解析

HostAgent使用大型语言模型进行多轮推理,生成结构化的响应:

def get_response(self):
    retry = 0
    while retry < configs.get("JSON_PARSING_RETRY", 3):
        self._response, self.cost = self.host_agent.get_response(
            self._prompt_message, "HOSTAGENT", use_backup_engine=True
        )
        try:
            self._response_json = self.host_agent.response_to_dict(self._response)
            break
        except Exception as e:
            retry += 1

响应解析确保生成的结构化数据包含:

字段描述示例
ControlLabel目标应用程序窗口标识"Window_3"
ControlText应用程序名称描述"Microsoft Word"
CurrentSubtask当前要执行的子任务"打开Word并创建新文档"
Plan整体任务执行计划["启动Word", "创建文档", "插入内容"]
Message传递给AppAgent的指令["请创建新文档", "准备接收内容"]
Status当前执行状态"CONTINUE" 或 "FINISH"
Bash需要执行的Shell命令"start winword"
4. 应用调度与AppAgent管理

基于解析结果,HostAgent负责创建和管理相应的AppAgent:

def create_app_agent(self, application_window_name, application_root_name, request, mode):
    if mode in ["normal", "batch_normal", "follower"]:
        agent_name = "AppAgent/{root}/{process}".format(
            root=application_root_name, process=application_window_name
        )
        app_agent = self.create_subagent(
            agent_type="app",
            agent_name=agent_name,
            process_name=application_window_name,
            app_root_name=application_root_name,
            is_visual=configs["APP_AGENT"]["VISUAL_MODE"],
            main_prompt=configs["APPAGENT_PROMPT"],
            example_prompt=example_prompt,
            api_prompt=configs["API_PROMPT"],
            mode=mode,
        )
    
    # 配置API接收器和知识检索器
    if configs.get("USE_APIS", False):
        app_agent.Puppeteer.receiver_manager.create_api_receiver(
            application_root_name, application_window_name
        )
    
    app_agent.context_provision(request)
    return app_agent
5. 状态管理与异常处理

HostAgent维护一个健壮的状态管理系统来处理各种执行场景:

mermaid

异常处理机制包括:

  • JSON解析重试:最多3次响应解析重试
  • 应用窗口验证:检查目标应用程序是否可用
  • 备用引擎切换:在主LLM引擎失败时使用备用引擎
  • 执行超时控制:防止单个步骤执行时间过长
6. 知识整合与经验学习

HostAgent通过黑板机制整合多种知识来源:

def context_provision(self, request=""):
    # 离线文档检索
    self.build_offline_docs_retriever()
    # 在线搜索增强
    self.build_online_search_retriever(request, top_k=3)
    # 经验学习
    self.build_experience_retriever("experience_db")
    # 人工演示学习
    self.build_human_demonstration_retriever("demo_db")

知识整合策略:

  • 优先级调度:实时搜索 > 经验记录 > 离线文档
  • 上下文关联:根据当前任务动态调整检索策略
  • 质量过滤:基于置信度分数过滤低质量知识
  • 增量更新:执行过程中持续丰富知识库

通过这样精细化的任务解析流程,HostAgent能够准确理解用户意图,智能分解复杂任务,并协调多个AppAgent协同工作,最终实现端到端的自动化任务执行。其设计体现了现代多Agent系统的核心思想:集中式协调与分布式执行的完美结合。

AppAgent的ReAct循环与多模态感知

在UFO²架构中,AppAgent作为执行具体应用操作的核心组件,其核心工作机制建立在ReAct(Reasoning-Acting)循环基础上,并深度融合了多模态感知能力。这种设计使得AppAgent能够智能地理解Windows应用程序界面,执行精确的操作,并持续优化其决策过程。

ReAct循环的核心执行流程

AppAgent的ReAct循环遵循严格的步骤化执行模式,每个循环包含以下关键阶段:

mermaid

每个ReAct循环的具体步骤实现如下:

# AppAgentProcessor的核心处理流程
def process(self) -> None:
    # Step 1: 打印步骤信息
    self.print_step_info()
    
    # Step 2: 捕获屏幕截图
    self.capture_screenshot()
    
    # Step 3: 获取控件信息
    self.get_control_info()
    
    # Step 4: 构建提示消息
    self.get_prompt_message()
    
    # Step 5: 获取LLM响应
    self.get_response()
    
    # Step 6: 更新成本统计
    self.update_cost()
    
    # Step 7: 解析响应
    self.parse_response()
    
    # Step 8: 执行动作
    self.execute_action()
    
    # Step 9: 更新记忆
    self.update_memory()
    
    # Step 10: 更新状态
    self.update_status()
    
    # Step 11: 保存日志
    self.log_save()

多模态感知架构

AppAgent的多模态感知能力是其核心优势,通过融合视觉、文本和结构化数据来实现对应用程序界面的深度理解:

mermaid

视觉感知能力

AppAgent的视觉感知通过多种技术手段实现:

  1. 屏幕截图捕获:使用PhotographerFacade捕获应用程序窗口的高质量截图
  2. 控件检测与标注:支持UIA、Win32和OmniParser多种后端检测技术
  3. 视觉-文本对齐:将检测到的控件与屏幕位置精确映射
# 多模态控件检测实现
def get_control_list(self, screenshot_path: str) -> List[UIAWrapper]:
    # UIA后端控件检测
    api_control_list = self.control_inspector.find_control_elements_in_descendants(
        self.application_window,
        control_type_list=configs.get("CONTROL_LIST", []),
        class_name_list=configs.get("CONTROL_LIST", [])
    )
    
    # OmniParser视觉 grounding 检测
    if "omniparser" in control_detection_backend:
        grounding_control_list = self.grounding_service.convert_to_virtual_uia_elements(
            image_path=screenshot_path,
            application_window=self.application_window,
            box_threshold=0.05,
            iou_threshold=0.1
        )
    
    # 多后端检测结果融合
    merged_control_list = self.photographer.merge_control_list(
        api_control_list,
        grounding_control_list,
        iou_overlap_threshold=0.1
    )
    
    return merged_control_list
多模态提示构建

AppAgent的多模态提示构建是其智能决策的核心,支持丰富的视觉和文本信息组合:

模态类型数据内容处理方式用途
视觉模态应用程序截图Base64编码图像URL提供当前界面视觉上下文
文本模态控件文本信息JSON结构化描述描述可操作控件的属性
历史模态先前子任务序列化历史记录提供任务执行上下文
知识模态RAG检索结果文本摘要增强外部知识支持
# 多模态提示内容构建
def user_content_construction(self, image_list: List[str], control_item: List[str], 
                             prev_subtask: List[str], user_request: str) -> List[Dict[str, str]]:
    
    user_content = []
    
    if self.is_visual:
        # 添加视觉内容
        screenshot_text = ["Current Screenshots:", "Annotated Screenshot:"]
        for i, image in enumerate(image_list):
            user_content.append({"type": "text", "text": screenshot_text[i]})
            user_content.append({"type": "image_url", "image_url": {"url": image}})
    
    # 添加上下文文本内容
    user_content.append({
        "type": "text",
        "text": self.user_prompt_construction(
            control_item=control_item,
            prev_subtask=prev_subtask,
            user_request=user_request
        )
    })
    
    return user_content

混合控制检测策略

AppAgent采用混合控制检测策略,结合多种技术来确保控件识别的准确性和鲁棒性:

检测技术检测原理优势适用场景
UIA自动化Windows UI Automation API原生支持,精度高标准Windows控件
Win32 API传统Win32控件检测兼容性好传统应用程序
OmniParser计算机视觉目标检测视觉泛化能力强自定义控件、游戏界面
多模态融合多技术结果融合综合优势,鲁棒性强复杂混合界面

实时状态管理与记忆更新

AppAgent在ReAct循环中维护详细的状态记忆,确保决策的连续性和一致性:

# 状态记忆数据结构
@dataclass
class AppAgentAdditionalMemory:
    Step: int                    # 当前步骤
    RoundStep: int               # 本轮步骤
    Subtask: str                 # 当前子任务
    FunctionCall: List[str]      # 函数调用序列
    Action: List[Dict[str, Any]] # 执行动作记录
    ActionSuccess: List[Dict[str, Any]] # 成功动作记录
    Request: str                 # 用户请求
    Application: str             # 当前应用程序
    Cost: float                  # 执行成本
    ControlLog: Dict[str, Any]   # 控件操作日志

错误处理与恢复机制

AppAgent具备强大的错误处理和恢复能力,确保在遇到异常情况时能够继续执行:

  1. 异常捕获装饰器:使用装饰器模式统一处理各步骤的异常
  2. 状态回滚机制:在错误发生时回滚到安全状态
  3. 重试策略:对可重试错误实施指数退避重试
  4. 人工干预支持:在关键决策点支持人工确认和指导
# 异常处理装饰器实现
@classmethod
def exception_capture(cls, func):
    @wraps(func)
    def wrapper(self, *args, **kwargs):
        try:
            func(self, *args, **kwargs)
        except Exception as e:
            # 记录异常信息
            self._exeception_traceback[func.__name__] = {
                "type": str(type(e).__name__),
                "message": str(e),
                "traceback": traceback.format_exc()
            }
            # 设置错误状态
            self._status = self._agent_status_manager.ERROR.value
            # 同步记忆和日志
            self.sync_memory()
            self.add_to_memory({"error": self._exeception_traceback})
            self.log_save()
            raise StopIteration("Error occurred during step.")
    return wrapper

性能优化策略

AppAgent通过多种技术手段优化执行性能:

  1. 推测性多动作执行:预测并批量执行可能的多步动作
  2. 控件过滤优化:基于任务相关性过滤无关控件
  3. 视觉检测缓存:对稳定界面元素实施检测结果缓存
  4. 异步处理:对耗时操作实施异步处理避免阻塞

通过ReAct循环与多模态感知的深度融合,AppAgent能够在复杂的Windows应用程序环境中实现智能、可靠的任务自动化执行,为UFO²框架提供了强大的终端执行能力。

Agent间状态管理与协调机制

UFO²架构中的多Agent协同工作依赖于一套精密的状态管理与协调机制,这套机制确保了HostAgent与AppAgent之间的无缝协作、状态同步和任务流转。该机制通过分层状态管理、共享内存模型、上下文同步机制三大核心组件实现Agent间的有效协调。

状态机架构与状态流转

UFO²采用基于有限状态机(FSM)的状态管理模式,每个Agent都维护自己的状态机,并通过状态管理器进行统一管理。状态流转遵循严格的规则,确保任务执行的逻辑性和可靠性。

mermaid

状态管理器实现

每个Agent类型都有对应的状态管理器,负责状态的注册、获取和转换:

class HostAgentStateManager(AgentStateManager):
    """HostAgent状态管理器"""
    _state_mapping: Dict[str, Type[HostAgentState]] = {}
    
    @property
    def none_state(self) -> AgentState:
        return NoneHostAgentState()
    
    @classmethod
    def register(cls, state_class: Type[AgentState]) -> Type[AgentState]:
        """注册状态类"""
        cls._state_mapping[state_class.name()] = state_class
        return state_class
核心状态类型
状态类型描述触发条件
ContinueHostAgentStateHostAgent继续分析任务需要进一步分解任务
AssignHostAgentState分配任务给AppAgent识别到需要应用操作
FinishHostAgentStateHostAgent完成任务所有任务完成
ContinueAppAgentStateAppAgent继续执行子任务未完成
FinishAppAgentStateAppAgent完成子任务子任务执行成功
PendingAppAgentState等待用户确认需要用户输入
ErrorHostAgentState错误状态执行过程中出错

共享内存模型:Blackboard机制

UFO²采用Blackboard(黑板)模式作为Agent间的共享内存机制,所有Agent都可以访问和修改Blackboard中的信息,实现跨Agent的数据共享和状态同步。

Blackboard数据结构
class Blackboard:
    """共享黑板数据结构"""
    def __init__(self) -> None:
        self._questions: Memory = Memory()      # 问题与答案
        self._requests: Memory = Memory()       # 请求历史
        self._trajectories: Memory = Memory()   # 执行轨迹
        self._screenshots: Memory = Memory()    # 屏幕截图
数据共享流程

mermaid

Blackboard数据示例
{
  "questions": [
    {"question": "用户确认操作?", "answer": "是"}
  ],
  "requests": [
    {"request": "在Excel中创建销售报表", "timestamp": "2024-01-01T10:00:00"}
  ],
  "trajectories": [
    {"action": "click", "control": "插入选项卡", "result": "成功"}
  ],
  "screenshots": [
    {"image_path": "/logs/step1.png", "metadata": {"application": "Excel"}}
  ]
}

上下文同步机制

Context对象作为会话级别的状态容器,维护着整个任务执行过程中的上下文信息,确保Agent间的状态一致性。

Context核心字段
字段名类型描述
APPLICATION_WINDOWUIAWrapper当前应用窗口句柄
APPLICATION_PROCESS_NAMEstr应用进程名称
APPLICATION_ROOT_NAMEstr应用根名称
SUBTASKstr当前子任务描述
PREVIOUS_SUBTASKSList[str]历史子任务记录
HOST_MESSAGEList[str]HostAgent传递给AppAgent的消息
SESSION_STEPint会话步骤计数器
ROUND_STEPint轮次步骤计数器
上下文同步代码实现
def sync_memory(self):
    """同步HostAgent内存到Blackboard"""
    additional_memory = HostAgentAdditionalMemory(
        Step=self.session_step,
        RoundStep=self.round_step,
        AgentStep=self.host_agent.step,
        Round=self.round_num,
        ControlLabel=self.control_label,
        SubtaskIndex=-1,
        FunctionCall=self.actions.get_function_calls(),
        Action=self.actions.to_list_of_dicts(),
        ActionType="Bash" if self.bash_command else "UIControl",
        Request=self.request,
        Agent="HostAgent",
        AgentName=self.host_agent.name,
        Application=self.app_root,
        Cost=self._cost,
        Results=self.actions.get_results(),
        error=self._exeception_traceback,
        time_cost=self._time_cost,
        ControlLog=self.actions.get_control_logs(),
    )
    
    self.add_to_memory(self._response_json)
    self.add_to_memory(asdict(additional_memory))

状态协调与任务流转

Agent间的状态协调通过状态处理器(Processor) 实现,每个Processor负责特定类型Agent的状态管理和任务执行。

协调流程
  1. 任务接收与解析

    def handle(self, agent: "HostAgent", context: Optional["Context"] = None):
        # HostAgent解析用户请求
        agent.process(context)
    
  2. 应用选择与分配

    def next_agent(self, agent: "HostAgent") -> AppAgent:
        # 选择下一个执行的AppAgent
        return agent.get_active_appagent()
    
  3. 状态转换决策

    def next_state(self, agent: "HostAgent") -> AppAgentState:
        # 根据当前状态决定下一个状态
        if agent.mode == "follower":
            return FinishHostAgentState()
        else:
            return ContinueHostAgentState()
    
  4. 子任务归档

    def archive_subtask(self, context: "Context") -> None:
        # 将完成的子任务归档到上下文
        subtask = context.get(ContextNames.SUBTASK)
        previous_subtasks = context.get(ContextNames.PREVIOUS_SUBTASKS)
        subtask_info = {"subtask": subtask, "status": self.name()}
        previous_subtasks.append(subtask_info)
    

异常处理与状态恢复

UFO²提供了完善的异常处理机制,确保在出现错误时能够 gracefully 处理并恢复状态。

异常状态处理
@BaseProcessor.exception_capture
def execute_action(self) -> None:
    """执行动作的异常保护"""
    try:
        # 尝试执行动作
        self._execute_core_action()
    except Exception as e:
        # 记录异常信息
        self._exeception_traceback = {
            "type": str(type(e).__name__),
            "message": str(e),
            "traceback": traceback.format_exc()
        }
        # 切换到错误状态
        self._status = self._agent_status_manager.ERROR.value
        # 同步内存状态
        self.sync_memory()
        # 记录错误日志
        self.add_to_memory({"error": self._exeception_traceback})

性能优化与状态缓存

为了提高状态管理的效率,UFO²采用了多种优化策略:

  1. 懒加载状态实例:状态对象在第一次使用时才创建
  2. 内存数据序列化:使用高效的JSON序列化进行状态持久化
  3. 增量状态更新:只同步发生变化的状态数据
  4. 状态缓存机制:频繁访问的状态数据缓存在内存中
def get_state(self, status: str) -> AgentState:
    """获取状态实例(懒加载)"""
    if status not in self._state_instance_mapping:
        state_class = self._state_mapping.get(status)
        if state_class:
            self._state_instance_mapping[status] = state_class()
        else:
            self._state_instance_mapping[status] = self.none_state
    return self._state_instance_mapping.get(status, self.none_state)

状态监控与调试支持

UFO²提供了详细的状态监控和调试支持,包括:

  • 实时状态追踪:监控每个Agent的当前状态和历史状态变迁
  • 执行轨迹记录:完整记录每个步骤的执行过程和结果
  • 内存快照功能:支持在任何时间点获取系统状态的快照
  • 状态可视化工具:提供状态机的可视化展示和调试界面

通过这套精密的状态管理与协调机制,UFO²确保了多Agent系统的可靠性、可维护性和扩展性,为复杂的跨应用自动化任务提供了坚实的基础支撑。

有限状态机(FSM)在任务执行中的应用

UFO²框架采用基于有限状态机(Finite State Machine, FSM)的架构来管理复杂的多智能体协作流程。这种设计模式为桌面自动化任务提供了清晰的状态管理和优雅的状态转换机制,确保系统在不同应用场景下都能保持稳定和可预测的行为。

FSM架构设计原理

UFO²的FSM架构基于经典的状态模式(State Pattern)实现,每个智能体类型(HostAgent、AppAgent、OperatorAgent)都有自己独立的状态管理系统。核心架构采用分层设计:

mermaid

状态定义与枚举

系统定义了标准化的状态枚举,为不同类型的智能体提供统一的状态标识:

class AgentStatus(Enum):
    ERROR = "ERROR"
    FINISH = "FINISH"
    CONTINUE = "CONTINUE"
    FAIL = "FAIL"
    PENDING = "PENDING"
    CONFIRM = "CONFIRM"
    SCREENSHOT = "SCREENSHOT"

class HostAgentStatus(Enum):
    ERROR = "ERROR"
    FINISH = "FINISH"
    CONTINUE = "CONTINUE"
    ASSIGN = "ASSIGN"  # 特有的任务分配状态
    FAIL = "FAIL"
    PENDING = "PENDING"
    CONFIRM = "CONFIRM"

状态转换机制

UFO²的状态转换机制通过next_state()next_agent()方法实现,确保状态迁移的逻辑清晰且可维护:

def next_state(self, agent: "HostAgent") -> AgentState:
    """
    获取下一个状态
    :param agent: 当前智能体
    :return: 下一个状态对象
    """
    status = agent.status  # 获取当前状态标识
    state = HostAgentStateManager().get_state(status)  # 从状态管理器获取对应状态
    return state

def next_agent(self, agent: "HostAgent") -> AppAgent:
    """
    获取下一个执行的智能体
    :param agent: 当前智能体  
    :return: 下一个要执行的智能体
    """
    return agent.get_active_appagent()  # 通常切换到AppAgent执行具体任务

核心状态类实现

HostAgent状态类

HostAgent作为协调者,具有专门的任务分配状态:

@HostAgentStateManager.register
class AssignHostAgentState(HostAgentState):
    """任务分配状态 - 创建并指派AppAgent执行具体任务"""
    
    def handle(self, agent: "HostAgent", context: Optional["Context"] = None) -> None:
        application_window_name = context.get(ContextNames.APPLICATION_PROCESS_NAME)
        application_root_name = context.get(ContextNames.APPLICATION_ROOT_NAME)
        request = context.get(ContextNames.REQUEST)
        mode = context.get(ContextNames.MODE)
        
        # 创建应用智能体执行具体任务
        agent.create_app_agent(
            application_window_name=application_window_name,
            application_root_name=application_root_name,
            request=request,
            mode=mode,
        )
    
    def next_state(self, agent: "HostAgent") -> AppAgentState:
        next_agent = self.next_agent(agent)
        
        # 根据智能体类型选择下一个状态
        from ufo.agents.agent.app_agent import OpenAIOperatorAgent
        if type(next_agent) == OpenAIOperatorAgent:
            from ufo.agents.states.operator_state import ContinueOpenAIOperatorState
            return ContinueOpenAIOperatorState()
        else:
            from ufo.agents.states.app_agent_state import ContinueAppAgentState
            return ContinueAppAgentState()
AppAgent状态类

AppAgent作为执行者,具有丰富的状态来处理各种应用交互场景:

@AppAgentStateManager.register
class ContinueAppAgentState(AppAgentState):
    """继续执行状态 - 处理应用交互任务"""
    
    def handle(self, agent: "AppAgent", context: Optional["Context"] = None) -> None:
        agent.process(context)  # 执行具体的应用处理逻辑
    
    def is_subtask_end(self) -> bool:
        return False  # 子任务未结束,继续执行
    
    @classmethod
    def name(cls) -> str:
        return AppAgentStatus.CONTINUE.value

@AppAgentStateManager.register
class ScreenshotAppAgentState(ContinueAppAgentState):
    """截图状态 - 专门处理界面截图和控件重标注"""
    
    @classmethod
    def name(cls) -> str:
        return AppAgentStatus.SCREENSHOT.value
    
    def next_state(self, agent: BasicAgent) -> AgentState:
        agent_processor = agent.processor
        if agent_processor is None or len(agent_processor.control_reannotate) == 0:
            agent.status = AppAgentStatus.CONTINUE.value
            return ContinueAppAgentState()
        else:
            return super().next_state(agent)

状态流转流程

UFO²的状态机执行流程遵循严格的循环控制机制:

mermaid

状态管理的优势

  1. 清晰的职责分离:每个状态类只关注特定的行为逻辑,符合单一职责原则
  2. 易于扩展:通过装饰器模式注册新状态,支持灵活的功能扩展
  3. 状态可预测:明确的状态转换规则使系统行为更加可预测和可调试
  4. 错误隔离:错误状态专门处理,避免错误传播到其他状态

实际应用场景示例

在文件处理任务中,FSM的状态流转如下:

状态类型状态名称处理行为下一个状态
HostAgentASSIGN创建Word应用智能体ContinueAppAgentState
AppAgentCONTINUE打开Word文档ContinueAppAgentState
AppAgentCONTINUE编辑文档内容ContinueAppAgentState
AppAgentSCREENSHOT截图确认格式ContinueAppAgentState
AppAgentFINISH保存并关闭文档ContinueHostAgentState

这种基于FSM的架构设计使得UFO²能够高效地管理复杂的多应用协作任务,确保每个步骤都有明确的状态定义和转换路径,大大提高了系统的可靠性和可维护性。

总结

UFO²架构通过HostAgent与AppAgent的精密协同工作机制,展现了现代多智能体系统的强大能力。HostAgent的智能任务解析与协调能力,结合AppAgent的多模态感知与精确执行能力,形成了一个完整的端到端自动化解决方案。有限状态机的应用使系统状态管理更加清晰可靠,而Blackboard机制和上下文同步确保了智能体间的高效协作。这种架构设计不仅提高了复杂任务的执行效率,还为系统的扩展和维护提供了坚实基础,代表了桌面自动化领域的技术前沿。

【免费下载链接】UFO 【免费下载链接】UFO 项目地址: https://gitcode.com/gh_mirrors/uf/UFO

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值