探索智能边缘计算:Game-Theoretic-Deep-Reinforcement-Learning

探索智能边缘计算:Game-Theoretic-Deep-Reinforcement-Learning

Game-Theoretic-Deep-Reinforcement-LearningCode of Paper "Joint Task Offloading and Resource Optimization in NOMA-based Vehicular Edge Computing: A Game-Theoretic DRL Approach", JSA 2022.项目地址:https://gitcode.com/gh_mirrors/ga/Game-Theoretic-Deep-Reinforcement-Learning

在这个数字化时代,智能交通系统的发展离不开高效能的计算资源。Game-Theoretic-Deep-Reinforcement-Learning 是一个创新性的开源项目,它将博弈论和深度强化学习相结合,用于解决非正交多址(NOMA)基于车辆边缘计算(VEC)中的任务卸载和资源优化问题。该项目由Xu等人在2022年发表的研究论文中提出,并提供了全面的代码实现。

项目介绍

该项目的核心是通过多智能体深度强化学习算法来处理复杂的网络决策问题,旨在最大化整体系统性能。其目标是在满足延迟约束的同时,最小化总能耗,从而提升车载应用的服务质量。通过模拟真实的交通场景——如滴滴数据集提供的成都车辆轨迹,这个项目展示了强大的现实世界适用性。

项目技术分析

项目采用以下几种先进的机器学习算法:

  1. MAD4PG(Multi-Agent Distributed Distributional Deep Deterministic Policy Gradient):这是一种分布式多智能体分布型策略梯度算法,能够在分布式环境中协同学习最优策略。
  2. MADDPG(Multi-Agent Deep Deterministic Policy Gradient):这是一个多智能体版本的深度确定性策略梯度算法,用于解决环境交互中的合作问题。
  3. D4PG(Distributed Distributional Deep Deterministic Policy Gradient):该算法适用于单智能体环境,实现了分布式学习和分布式执行,提高了学习效率。
  4. 对比算法还包括ORL(Optimal Resource Allocation and Task Local Processing Only)和ORM(Optimal Resource Allocation and Task Migration Only),它们分别展示了仅本地处理和仅迁移任务的情况。

所有这些算法都在Experiment目录下的对应脚本文件中实现,并可以在给定的Conda环境中轻松运行。

应用场景

Game-Theoretic-Deep-Reinforcement-Learning项目特别适用于:

  • 智能交通系统:为自动驾驶汽车和其他移动设备提供实时、低延迟的任务处理解决方案。
  • 边缘计算平台:优化资源分配,提高服务质量和效率。
  • 物联网研究:作为测试和改进新的智能决策算法的基础框架。

项目特点

  1. 理论与实践结合:项目结合了博弈论的理论深度和深度强化学习的实践经验。
  2. 多智能体学习:支持多个智能体的协作学习,适应动态环境。
  3. 真实数据驱动:使用来自滴滴的真实车辆轨迹数据进行训练和评估,确保结果的实用性和可靠性。
  4. 可扩展性:代码结构清晰,易于理解和修改,为其他领域的应用提供了基础。

要开始探索这个项目,请参考项目文档,使用提供的environment.yml文件创建必要的运行环境,然后运行相应的Python脚本来启动不同的算法。对于研究人员和开发者来说,这是一个极好的机会,可以深入了解如何利用深度强化学习解决实际挑战。

最后,如果你在相关领域进行研究或开发工作,别忘了引用原始论文以支持作者的努力:

@article{xu2022joint,
  title={联合任务卸载和资源优化在NOMA-Based车辆边缘计算中的游戏理论DRL方法},
  author={徐新超 and 刘凯 and 戴鹏林 and 金飞宇 and 任华玲 and 翟春娟 and 郭松涛},
  journal={系统架构杂志},
  pages={102780},
  year={2022},
  issn = {1383-7621},
  doi = {https://doi.org/10.1016/j.sysarc.2022.102780},
  url = {https://www.sciencedirect.com/science/article/pii/S138376212200265X},
  publisher={ Elsevier }
}

一起投身于智能边缘计算的未来,让我们的出行更加智能化和绿色化!

Game-Theoretic-Deep-Reinforcement-LearningCode of Paper "Joint Task Offloading and Resource Optimization in NOMA-based Vehicular Edge Computing: A Game-Theoretic DRL Approach", JSA 2022.项目地址:https://gitcode.com/gh_mirrors/ga/Game-Theoretic-Deep-Reinforcement-Learning

系统论过程分析(System-Theoretic Process Analysis,STPA)是一种风险评估和安全分析方法,目的是识别和理解系统中的潜在故障和失效,并提供改进系统安全性的建议。 STPA通过将系统视为一个复杂的、有多个组成部分的整体,来分析系统的行为和交互。它基于系统论的思想,将系统中的各个元素和他们之间的关系视为一个动态的过程。STPA的核心是对系统功能、架构、控制算法和环境的分析,以识别可能发生的故障和失效。 STPA的分析过程包括以下步骤: 1. 系统描述:定义系统的功能、组件和交互,并确定系统的边界。 2. 基本事件分析:识别潜在的故障和失效情景,通过分析系统中的基本事件,例如传感器故障、控制逻辑失效等。 3. 控制流分析:分析系统中的控制流,包括输入、输出和数据流动的路径。识别可能导致故障和失效的因素,如错误输入、数据冲突等。 4. 故障传播分析:分析故障在系统中的传播路径,识别可能影响其他组件和功能的故障。 5. 应急处置分析:评估系统中存在的应急措施和反应能力,提出改进系统安全性的建议。 通过STPA的分析,可以帮助识别系统中的潜在风险,并提供改进系统安全性的措施。它适用于各种系统,包括工业控制系统、交通系统、航空航天系统等。STPA为工程师和决策者提供了一个全面的分析框架,以提高系统的可靠性和安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞿旺晟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值