Flask_Keras_Xception_API 教程:深度学习模型部署实践

Flask_Keras_Xception_API 教程:深度学习模型部署实践

Flask_Keras_Xception_API 使用Flask+Keras部署的基于Xception神经网络的细胞图像AI医疗辅助识别系统(含简单前端demo) 项目地址: https://gitcode.com/gh_mirrors/fl/Flask_Keras_Xception_API

一、项目目录结构及介绍

本项目Flask_Keras_Xception_API旨在构建一个基于Flask的RESTful API,用于部署预训练的Keras Xception模型进行图像分类任务。以下是其主要的目录结构及其简要说明:

.
├── app                # 核心应用文件夹
│   ├── __init__.py    # 初始化Flask应用和相关配置
│   ├── model.py       # 包含加载模型、预处理数据等函数
│   └── routes.py      # 定义API路由和处理请求
├── config.py          # 应用配置文件
├── requirements.txt   # 项目依赖库列表
├── run.py             # 项目启动脚本
└── README.md          # 项目简介和快速入门指南
  1. app 文件夹 - 包括所有核心代码,其中__init__.py初始化Flask应用程序上下文,model.py负责加载模型并定义必要的数据处理逻辑,而routes.py则定义了API的端点和业务逻辑。
  2. config.py - 配置文件,存储数据库连接信息、环境变量等,确保应用运行所需的配置灵活性。
  3. requirements.txt - 列出了项目运行所必需的所有Python包,通过pip install -r requirements.txt可安装这些依赖。
  4. run.py - 启动应用程序的入口脚本,包含了Flask应用实例化和运行命令。

二、项目启动文件介绍

run.py

run.py是项目的启动脚本,它执行以下关键步骤来启动服务:

from flask import Flask
from app import create_app

app = create_app()

if __name__ == '__main__':
    app.run(debug=True)
  • create_app()通常在__init__.py中定义,根据环境(如开发、生产)返回适当的Flask应用实例。
  • 使用app.run(debug=True)启动Flask服务器,在调试模式下运行,便于开发过程中的即时反馈和错误修正。

三、项目的配置文件介绍

config.py

配置文件config.py用来设置应用的环境变量和参数。示例配置可能包括:

class Config(object):
    SECRET_KEY = 'your-secret-key'
    DEBUG = False
    TESTING = False
    
class DevelopmentConfig(Config):
    # 开发环境特定的配置
    DEBUG = True

class ProductionConfig(Config):
    # 生产环境配置
    DEBUG = False

config_by_name = dict(
    dev=DevelopmentConfig,
    prod=ProductionConfig
)

get_config = lambda name: config_by_name.get(name.lower(), DevelopmentConfig)

该文件定义了至少两种配置类——DevelopmentConfigProductionConfig,分别适应不同的运行环境。通过修改create_app()函数内部使用的配置类,可以切换到不同环境的配置。

通过以上介绍,开发者可以清晰地理解项目架构,轻松地开始集成、开发或部署此基于Flask和Keras的深度学习API服务。记得在实际部署时,根据环境调整配置,并确保所有依赖已就绪。

Flask_Keras_Xception_API 使用Flask+Keras部署的基于Xception神经网络的细胞图像AI医疗辅助识别系统(含简单前端demo) 项目地址: https://gitcode.com/gh_mirrors/fl/Flask_Keras_Xception_API

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤琦珺Bess

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值