探索时空的脉络:Python实现的多元Hawkes过程库
项目地址:https://gitcode.com/gh_mirrors/ha/hawkes
在这个数字时代,事件序列数据分析变得日益重要,尤其是在金融交易、社交媒体和网络行为研究中。多元Hawkes过程(Multivariate Hawkes Process)是一种强大的工具,能够捕捉到事件之间的相互影响和自我强化效应。现在,我们很高兴地向您推荐一个开源项目——Python类库,用于处理多元Hawkes过程。
项目介绍
这个项目提供了一个名为MHP
的类,旨在帮助研究人员进行基本的Hawkes过程实验。无论是单变量还是多变量的过程,它都支持合成序列的生成以及已知序列的参数估计。该项目的实现基于一种最大后验期望(MAP)的期望最大化(EM)算法,该算法详细描述在预印本和作者的硕士论文中。
项目技术分析
MHP
的核心方法包括:
-
generate_seq
:根据构造器中指定的参数值生成合成序列。使用Ogata稀疏化,并添加了两种优化:保存上一次事件发生时的速率,并利用NumPy的random.sample
进行加权随机采样以替代传统循环。 -
EM
:采用贝叶斯EM算法学习参数,给定一个序列和对alpha
、mu
和omega
的估计。其中,omega
被视为超参数并未经优化。
此外,还有两个可视化方法:plot_events
绘制事件的时间序列,而plot_rates
则展示对应条件强度的时间序列(当前仅对dim=3
实现了这一功能)。
应用场景
这个库适用于各种领域的应用,比如:
- 金融市场分析:理解股票交易或高频数据中的交互模式。
- 社交媒体研究:探索用户在社交平台上的互动行为。
- 网络安全:检测和分析网络攻击的连锁效应。
项目特点
- 易用性:通过简单的API调用来生成和学习多维Hawkes过程。
- 效率提升:利用优化的Ogata稀疏化方法提高速度。
- 可视化:内置的方法使观察事件和强度动态变得直观。
- 灵活性:可适应不同维度的Hawkes过程。
- 理论基础:基于最新的学术研究成果实现。
例如,以下代码即可初始化一个三元组Hawkes过程并生成其事件序列:
from MHP import MHP
m = np.array([0.2, 0.0, 0.0])
a = np.array([[0.1, 0.0, 0.0],
[0.9, 0.0, 0.0],
[0.0, 0.9, 0.0]])
w = 3.1
P = MHP(mu=m, alpha=a, omega=w)
P.generate_seq(60)
P.plot_events()
对于想要深入了解Hawkes过程的人来说,这是一个极好的起点。不仅如此,这个库还提供了其他更复杂的代码仓库链接,供进一步研究和扩展。
总之,这个开源项目为那些想探索复杂时间序列数据的学者和实践者提供了一把钥匙,帮助他们揭示隐藏在事件流背后的规律和模式。让我们一起步入多元Hawkes过程的世界,挖掘出更多有价值的信息吧!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考