nockchain:轻量级区块链,为重量级可验证应用而生

nockchain:轻量级区块链,为重量级可验证应用而生

nockchain Nockchain protocol monorepo nockchain 项目地址: https://gitcode.com/gh_mirrors/no/nockchain

项目介绍

在区块链技术不断发展的今天,我们看到了越来越多的应用场景涌现。然而,许多区块链项目在追求功能丰富的同时,往往牺牲了性能和易用性。nockchain项目应运而生,它是一款专为重量级可验证应用设计的轻量级区块链。它致力于实现无需信任的结算,同时保持计算的可验证性。

nockchain的核心理念是,未来的区块链将不再依赖于公开复制来确保可验证性,而是通过私人证明来实现。证明过程在链下进行,而验证过程则在链上完成,这样的设计使得nockchain在保证安全性的同时,大大提高了效率。

项目技术分析

nockchain采用Rust语言开发,这是一种系统级编程语言,以其安全性和性能著称。项目通过rustup工具来安装Rust环境,并通过choo编译器进行编译。在构建过程中,首先进行Hoon语言的编译,然后构建整个nockchain系统。

以下是nockchain的基本构建和运行命令:

  • 构建Hoon编译器:make install-choo
  • 构建nockchain:make build-hoon-allmake build
  • 运行领导者节点:make run-nockchain-leader
  • 运行跟随者节点:make run-nockchain-follower
  • 运行测试套件:make test

nockchain的设计允许节点在链上验证计算结果,而不需要复制整个链的数据,这在区块链技术中是一种创新。

项目及技术应用场景

nockchain适用于多种重量级可验证计算场景,包括但不限于:

  1. 金融交易:在金融领域,确保交易的安全性和可验证性至关重要。nockchain可以为金融机构提供一个高效、安全的环境,用于处理和验证交易。

  2. 供应链管理:在供应链中,商品的生产、运输和交付过程需要高度的透明度和可追溯性。nockchain可以帮助企业构建一个可靠的供应链管理系统。

  3. 版权保护:在数字版权领域,nockchain可以为创作者提供一个不可篡改的版权登记平台,确保作品的原创性和版权归属。

  4. 智能合约:nockchain支持智能合约的执行和验证,为去中心化应用(DApp)提供了一个高效的基础设施。

项目特点

  1. 轻量级设计:nockchain的设计注重性能和效率,它不需要复制整个链的数据,从而降低了存储和计算成本。

  2. 可扩展性:通过链下证明和链上验证的设计,nockchain可以支持大规模的应用场景。

  3. 安全性:采用Rust语言开发,确保了系统的安全性和稳定性。

  4. 易用性:项目提供了详细的构建和运行指南,使得开发者可以快速上手。

总之,nockchain项目以其独特的轻量级设计和高效的可验证计算能力,在区块链领域独树一帜。对于追求高性能、高安全性、可扩展性的开发者来说,nockchain无疑是一个值得关注的开源项目。

nockchain Nockchain protocol monorepo nockchain 项目地址: https://gitcode.com/gh_mirrors/no/nockchain

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理和成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动成精准答案。DeepSeek在此过程中负责问题理解、查询成、多轮对话和答案解释等核心环节。文章还详细展示了从问题理解、查询成到答案成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务和技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提高数据分析效率;③为技术团队提供智能问数系统的架构设计和技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
PSO-ELM,即粒子群优化极限学习机,是一种将粒子群优化算法(PSO)与极限学习机(ELM)相结合的机器学习方法。本次提供的压缩包中包含基于 MATLAB 实现的 PSO-ELM 源代码,版本为 V3.0,旨在通过 PSO 的全局搜索能力优化 ELM 的隐藏层节点参数,从而提升其学习效率与预测性能 。 PSO 是一种基于群体智能的全局优化算法,灵感来源于鸟群觅食行为。在该算法中,每个解决方案被视为一个“粒子”,在解空间中飞行并根据自身最佳位置(个体极值)和群体最佳位置(全局极值)来调整速度与位置。PSO 具有简单易实现、能处理多模态和高维问题以及易于并行化的优点 。 ELM 是一种快速单隐藏层前馈神经网络训练方法,由 Huang 等人提出。其核心思想是随机成隐藏层节点的输入权重和偏置,再通过最小二乘法一次性求解输出层权重,大大提高了训练速度。ELM 在模式识别、回归分析和时间序列预测等多个领域表现出色 。 在 PSO-ELM 中,PSO 负责优化 ELM 的隐藏层节点参数,包括输入权重和偏置。借助 PSO 的全局搜索特性,能够找到更优的隐藏层参数组合,进而增强 ELM 的泛化能力,尤其在解决非线性复杂问题时,相比传统 ELM 性能更优 。 MATLAB 是一款广泛应用于数值计算和数据可视化的数学计算及编程环境。PSO-ELM V3.0 的 MATLAB 源码涵盖了完整的算法流程,用户可通过修改参数设置以适应不同问题。代码通常包含初始化粒子群、迭代过程、性能评估等关键部分,便于研究人员理解和调整 。 PSO-ELM 在众多领域有广泛应用,如信号处理(声音识别、图像处理等)中可用于提高特征提取和分类的准确性;在工业设备的故障诊断中,能提前预测故障并减少停机时间;在经济预测领域,如股票价格预测,其高精度和快速训练速度使其成为实用工具;在电力系统中,可用于电力负荷预测和电力系统
### 关于面包板电源模块 MB102 的 USB 供电规格及兼容性 #### 1. **MB102 基本功能** 面包板电源模块 MB102 是一种常见的实验工具,主要用于为基于面包板的小型电子项目提供稳定的电压输出。它通常具有两路独立的稳压输出:一路为 5V 和另一路可调电压(一般范围为 3V 至 12V)。这种设计使得它可以满足多种芯片和传感器的不同工作电压需求。 #### 2. **USB 供电方式** MB102 支持通过 USB 接口供电,输入电压通常是标准的 5V DC[^1]。由于其内部集成了 LM7805 稳压器以及可调节电位器控制的直流-直流变换电路,因此即使输入来自电脑或其他低功率 USB 设备,也能稳定地向负载供应电力。不过需要注意的是,如果项目的功耗较高,则可能超出某些 USB 端口的最大电流能力(一般是 500mA),从而引起不稳定现象或者保护机制启动断开连接的情况发。 #### 3. **兼容性分析** 该型号广泛适用于各种微控制器单元 (MCU),特别是那些像 Wemos D1 R32 这样可以通过杜邦线轻松接入并共享相同逻辑级别的系统[^2]。另外,在提到 Arduino Uno 板时也表明了良好的互操作性,因为两者均采用相似的标准接口定义与电气特性参数设置[^4]: - 对于需要 3.3V 工作环境下的组件来说,只需调整好对应跳线帽位置即可实现精准匹配; - 当涉及到更多外围扩展应用场合下,例如带有多重模拟信号采集任务的情形里,利用 MB102 提供干净无干扰的基础能源供给就显得尤为重要了[^3]。 综上所述,对于打算构建以单片机为核心的原型验证平台而言,选用具备良好声誉记录且易于获取配件支持服务链路上下游资源丰富的品牌产品——如这里讨论过的这款特定类型的配电装置不失为明智之举之一。 ```python # 示例 Python 代码展示如何检测硬件状态 import machine pin = machine.Pin(2, machine.Pin.IN) if pin.value() == 1: print("Power supply is stable.") else: print("Check your connections and power source.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杭臣磊Sibley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值