Tengine-Convert-Tools 使用教程
1. 项目介绍
Tengine-Convert-Tools 是一个开源工具,支持将多种深度学习框架(如 Caffe、ONNX、TensorFlow、TFLite 等)的模型转换为适用于 Tengine-Lite AI 框架的 tmfile 格式。该工具依赖于 protobuf 来解析原型文件,因此只能在 x86 Linux 系统上运行。
Tengine-Convert-Tools 的主要功能包括:
- 支持多种深度学习框架的模型转换。
- 生成适用于 Tengine-Lite 的 tmfile 格式模型。
- 提供命令行工具进行模型转换。
2. 项目快速启动
2.1 安装依赖库
首先,安装必要的依赖库以支持 Caffe 和 TensorFlow 模型的加载:
sudo apt install libprotobuf-dev protobuf-compiler
2.2 构建转换工具
克隆项目并构建转换工具:
git clone https://github.com/OAID/Tengine-Convert-Tools.git
cd Tengine-Convert-Tools
mkdir build && cd build
cmake ..
make -j`nproc`
make install
2.3 运行转换工具
使用以下命令运行转换工具:
./build/install/bin/convert_tool -h
2.4 转换模型示例
以下是一些常见的模型转换示例:
Caffe 模型转换
./build/install/bin/convert_tool -f caffe -p mobilenet_deploy.prototxt -m mobilenet.caffemodel -o mobilenet.tmfile
ONNX 模型转换
./build/install/bin/convert_tool -f onnx -m mobilenet.onnx -o mobilenet.tmfile
TensorFlow 模型转换
./build/install/bin/convert_tool -f tensorflow -m mobilenet_v1_1.0_224_frozen.pb -o mobilenet.tmfile
3. 应用案例和最佳实践
3.1 案例1:将 Caffe 模型转换为 Tengine 模型
假设你有一个 Caffe 模型 resnet50,你可以使用以下命令将其转换为 Tengine 模型:
./build/install/bin/convert_tool -f caffe -p resnet50_deploy.prototxt -m resnet50.caffemodel -o resnet50.tmfile
3.2 案例2:将 ONNX 模型转换为 Tengine 模型
如果你有一个 ONNX 模型 yolov3,你可以使用以下命令将其转换为 Tengine 模型:
./build/install/bin/convert_tool -f onnx -m yolov3.onnx -o yolov3.tmfile
3.3 最佳实践
- 确保模型文件路径正确:在运行转换工具时,确保输入的模型文件路径和输出路径正确。
- 检查依赖库:确保所有依赖库已正确安装,特别是 protobuf 库。
- 使用最新版本:定期更新 Tengine-Convert-Tools 以获取最新的功能和修复。
4. 典型生态项目
4.1 Tengine-Lite
Tengine-Lite 是一个轻量级、高性能的深度学习推理框架,适用于嵌入式设备和移动设备。Tengine-Convert-Tools 生成的 tmfile 模型可以直接在 Tengine-Lite 上运行。
4.2 MegEngine
MegEngine 是一个由深度求索(DeepSeek)公司开发的深度学习框架。Tengine-Convert-Tools 支持将 MegEngine 模型转换为 tmfile 格式,以便在 Tengine-Lite 上进行推理。
4.3 ONNX
ONNX(Open Neural Network Exchange)是一个开放的深度学习模型交换格式。Tengine-Convert-Tools 支持将 ONNX 模型转换为 tmfile 格式,以便在 Tengine-Lite 上进行推理。
通过以上步骤,你可以轻松地将不同深度学习框架的模型转换为 Tengine-Lite 支持的格式,并在嵌入式设备上进行高效的推理。
3907

被折叠的 条评论
为什么被折叠?



