Shapash开源项目教程:透明且易理解的机器学习解释工具
项目概述
Shapash是一个旨在使机器学习模型变得可解释且易于所有人理解的Python库。它通过直观的可视化和清晰标注的标签,使得模型内部工作原理对所有使用者一目了然。此项目位于GitHub,提供了一种通过Web应用简化模型特征交互理解的方式,支持从回归到多分类任务,并兼容多种模型。
目录结构及介绍
以下是Shapash项目的主要目录结构及其简介:
.
├── CONTRIBUTING.md # 贡献指南
├── docs # 文档资料,包括教程和指导
├── gitignore # Git忽略文件配置
├── pre-commit-config.yaml # 预提交代码检查配置
├── pyproject.toml # 项目配置,指定使用的Python包管理器和依赖项
├── README.md # 项目介绍和快速入门指南
├── shapash # 主要的源码库,包含核心功能实现
├── tests # 测试用例
├── tutorial # 教程示例和案例演示
├── Makefile # 构建脚本,用于自动化一些构建过程
└── LICENSE # 开源许可协议,遵循Apache-2.0
docs包含详细的技术文档和用户指南。shapash存储了库的核心代码,实现了解释性和可解释性功能。tests用于单元测试和确保代码质量。tutorial提供实例教学帮助用户快速上手。CONTRIBUTING.md指导贡献者如何参与项目发展。pyproject.toml是现代Python项目的配置文件,定义了项目依赖和其他元数据。
项目的启动文件介绍
在Shapash中,并没有一个特定的“启动”文件如其他典型的Python应用那样直接运行。然而,使用Shapash通常始于导入其主要类,通常是SmartExplainer,并进行编译和执行一系列操作。以下是一个简化的启动流程示例,而不是直接指向一个启动文件:
from shapash import SmartExplainer
# 假设你已经训练了一个模型 'model'
# 并准备好了特征数据 'xtest' 和预测结果 'y_pred'
xpl = SmartExplainer(model=model)
xpl.compile(x=xtest, y_pred=y_pred)
# 接下来可以运行Web应用来查看解释结果
app = xpl.run_app()
实际部署时,用户的入口点可能在自己的应用程序中,利用上述步骤调用Shapash的功能。
项目的配置文件介绍
Shapash本身并不直接要求用户提供外部配置文件,它的配置主要是通过代码中的参数传递(例如,在创建SmartExplainer对象时)。不过,对于更复杂的环境设置,比如自定义报告的生成,可能会涉及到额外的环境变量或是在使用过程中动态提供的参数字典。例如,生成报告可能需要额外的依赖安装,并且可以通过命令行参数或者在脚本内设置这些条件。
如果需要对特定环境或应用定制配置,用户往往会在自己的项目中创建配置文件,例如.env或 YAML 文件来存储环境特定的设置,但这不是Shapash项目本身的组成部分,而是由用户根据需求来实施的。
总结来说,Shapash强调的是通过代码逻辑进行配置和个性化设置,而不是依赖于传统的独立配置文件。
118

被折叠的 条评论
为什么被折叠?



