探索精准医疗新纪元:DeepLIIF,一款智能的病理图像量化工具
在临床诊断领域,免疫组化(IHC)染色的组织图像分析是病理实验室常用的手段,它为患者护理提供了关键信息。然而,目前的报告方式主要是定性或半定量的。DeepLIIF项目为此带来了突破,它是一个深度学习驱动的一站式解决方案,旨在实现染色去卷积、细胞分割和单细胞IHC评分的自动化。
项目简介
DeepLIIF结合了自然医学会议(Nature MI'22)、计算机视觉与模式识别会议(CVPR'22)、国际医疗影像计算与计算机辅助干预大会(MICCAI'23)以及histopathology期刊(Histopathology'23)的研究成果,提供了一个在线平台,将低成本且广泛使用的IHC图像转化为更昂贵但信息丰富的多通道免疫荧光(mpIF)图像。通过独特的自动生成数据集,该项目能够对低清晰度IHC图像进行优化处理,并为明亮场IHC通道提供必需的地面真实信息。此外,它还引入了一种新的核膜染色剂LAP2beta,以改善细胞分割和蛋白质表达量化的准确性。
项目技术分析
DeepLIIF基于一个多任务的深度学习框架,可以一次性完成染色分离、细胞分割和单细胞IHC评分。模型经过训练后,不仅能在干净的IHC Ki67数据上运行,还能泛化到更嘈杂和有缺陷的图像以及其他核和非核标记,如CD3、CD8、BCL2等。DeepLIIF部署成一个免费的云原生平台,支持超过150种输入格式的Bioformats,并配备了MLOps流程。
应用场景
DeepLIIF的应用场景广泛,包括但不限于:
- 提高病理实验室的分析效率和准确性。
- 对IHC图像进行自动标注和量化,降低人为错误。
- 帮助研究者快速评估不同癌症类型的生物标志物表达水平。
- 研究细胞增殖和免疫微环境的变化。
项目特点
- 全面性:从单一的IHC图像中提取多种信息,包括细胞分割、染色分离和定量评分。
- 通用性:能够在各种核和非核标记上泛化,适应不同类型的病理图像。
- 易用性:提供本地安装包、Python接口、Fiji插件以及云服务等多种使用途径,无需复杂设置。
- 可扩展性:支持单/多GPU训练,Torchserve/Dask+Torchscript部署,可通过Pulumi进行自动缩放。
要开始使用DeepLIIF,您只需要具备Python 3.8和Docker环境,并按照项目Readme中的指示进行操作。无论是本地GPU运行还是远程云服务,DeepLIIF都能为您提供方便快捷的图像分析体验。
让我们携手探索DeepLIIF,开启精准医疗的新篇章,让科技服务于健康,让医疗更加智能!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考
 
       
           
            


 
            