CW Networks:突破图神经网络的表达瓶颈

CW Networks:突破图神经网络的表达瓶颈

cwn Message Passing Neural Networks for Simplicial and Cell Complexes cwn 项目地址: https://gitcode.com/gh_mirrors/cw/cwn

项目介绍

CW Networks(Cellular Weisfeiler-Lehman Networks)是由Twitter Research团队开发的一个开源项目,旨在解决传统图神经网络(GNNs)在表达能力、长程交互和建模高阶结构方面的局限性。该项目基于两篇重要的研究论文:Weisfeiler and Lehman Go Cellular: CW Networks(NeurIPS 2021)和**Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks**(ICML 2021)。通过引入细胞复形(Cell Complexes)的概念,CW Networks不仅解耦了计算图与输入图结构之间的强耦合关系,还提供了更强大的图“提升”变换,从而实现了更高效的层次消息传递过程。

项目技术分析

CW Networks的核心技术在于其对细胞复形的扩展应用。传统的消息传递简化网络(MPSNs)虽然在简化复形上进行消息传递,但其表达能力受到简化复形刚性组合结构的限制。CW Networks通过引入细胞复形,灵活地包含了简化复形和图结构,从而提供了更丰富的图提升变换。这些变换不仅增强了模型的表达能力,还在某些情况下达到了3-WL测试的水平。

项目使用了Python 3.8PyTorch 1.7.0,并支持CUDA 10.2。安装过程简单明了,通过conda创建虚拟环境并安装相关依赖即可快速上手。项目还提供了详细的测试脚本,确保用户在运行实验前能够验证环境的正确性。

项目及技术应用场景

CW Networks在多个领域展现了其强大的应用潜力:

  1. 分子图问题:通过基于环的提升方案,CW Networks在分子图数据集上取得了最先进的结果,证明了其在分子结构建模中的有效性。
  2. 图分类任务:在SR图分类基准测试中,CW Networks通过不同的环提升方案,展示了其区分不同图结构的能力。
  3. 轨迹分类:在海洋数据集上,CW Networks能够有效处理轨迹数据,展示了其在时间序列分析中的应用前景。

项目特点

  1. 增强的表达能力:CW Networks通过细胞复形的引入,提供了比传统GNNs更大的表达能力,甚至在某些情况下不亚于3-WL测试。
  2. 灵活的图提升变换:项目提供了多种图提升变换,每种变换都对应一种独特的层次消息传递过程,增强了模型的灵活性和适应性。
  3. 高效的距离压缩:通过细胞复形的层次结构,CW Networks能够有效压缩节点间的距离,提高了消息传递的效率。
  4. 开源与社区支持:作为开源项目,CW Networks不仅提供了详细的文档和安装指南,还鼓励社区贡献,推动技术的进一步发展。

结语

CW Networks通过引入细胞复形,突破了传统图神经网络的表达瓶颈,为图结构数据的处理提供了新的思路和方法。无论是在分子图建模、图分类还是轨迹分类等领域,CW Networks都展现了其强大的应用潜力。如果你正在寻找一种能够处理复杂图结构的高效工具,CW Networks无疑是一个值得尝试的选择。

访问CW Networks项目仓库

cwn Message Passing Neural Networks for Simplicial and Cell Complexes cwn 项目地址: https://gitcode.com/gh_mirrors/cw/cwn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

方玉蜜United

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值