开源项目 mean_average_precision
使用教程
1. 项目的目录结构及介绍
mean_average_precision/
├── README.md
├── setup.py
├── mean_average_precision/
│ ├── __init__.py
│ ├── metric_builder.py
│ ├── utils.py
│ └── ...
└── tests/
├── __init__.py
├── test_metric_builder.py
└── ...
README.md
: 项目介绍和使用说明。setup.py
: 项目安装脚本。mean_average_precision/
: 项目主目录,包含核心代码文件。__init__.py
: 模块初始化文件。metric_builder.py
: 构建评估指标的模块。utils.py
: 工具函数模块。
tests/
: 测试代码目录,包含各种测试脚本。
2. 项目的启动文件介绍
项目的启动文件主要是 metric_builder.py
,该文件包含了构建和计算平均精度(mAP)的主要功能。以下是该文件的主要内容:
# metric_builder.py
from .utils import calculate_iou
class MetricBuilder:
@staticmethod
def build_evaluation_metric(metric_type, async_mode=False):
if metric_type == "map_2d":
return MeanAveragePrecision2D(async_mode)
# 其他类型的指标构建
...
class MeanAveragePrecision2D:
def __init__(self, async_mode=False):
self.async_mode = async_mode
# 初始化其他必要的属性
...
def add(self, predictions, ground_truth):
# 添加预测和真实标签
...
def evaluate(self):
# 计算mAP
...
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过代码中的参数进行配置。例如,在 metric_builder.py
中,可以通过 async_mode
参数来控制是否启用异步模式。
# 示例代码
from mean_average_precision import MetricBuilder
# 创建评估指标对象
metric_fn = MetricBuilder.build_evaluation_metric("map_2d", async_mode=True)
# 添加预测和真实标签
metric_fn.add(predictions, ground_truth)
# 计算mAP
result = metric_fn.evaluate()
通过上述代码,可以根据需要调整 async_mode
参数来启用或禁用异步模式。
以上是 mean_average_precision
开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考