rLLM: 关系型表格学习与大型语言模型的PyTorch库安装与使用指南
rllm 项目地址: https://gitcode.com/gh_mirrors/rl/rllm
项目概述
rLLM(relationLLM)是一个基于PyTorch的易用库,专为使用大型语言模型(LLMs)进行关系型表格学习(RTL)设计。该库通过标准化模块分解最先进的图神经网络(GNNs)、LLMs和时空网络(TNNs),并促进了利用这些模块以“组合、对齐、联合训练”的方式构建新模型的能力。
目录结构及介绍
rLLM项目遵循典型的Python项目结构,其核心组件和关键文件包括:
rllm/
├── examples # 示例代码,展示如何运行特定的RTL方法
│ ├── bridge # 包含BRIDGE方法相关的示例脚本
│ └── bridge_*.py # 如 bridge_tml1m.py, 实现特定数据集上的桥接算法执行
├── rllm # 主要库代码所在位置,包含了模型定义和主要函数
├── tests # 单元测试文件
├── .gitignore # 忽略的文件列表
├── LICENSE # 许可证文件,采用MIT License
├── README.md # 项目说明文档
├── readthedocs.yml # ReadTheDocs的配置文件
├── requirements.txt # 项目依赖的第三方库清单
└── setup.py # 用于安装项目的脚本
启动文件介绍
在examples目录下,你会发现多个以.py结尾的脚本,如bridge_*.py系列。这些是启动rtl方法的入口点,比如bridge_tml1m.py是为了在TML1M数据集上运行BRIDGE方法。运行这些脚本是体验或测试rLLM功能的直接方式。例如,通过命令行执行python examples/bridge/bridge_tml1m.py即可开始一个实验。
配置文件介绍
虽然直接的配置文件(如.yaml或.ini)在上述目录结构中未特别提及,但配置通常通过修改脚本中的参数或者环境变量来实现。例如,在examples下的脚本可能接受命令行参数或读取特定的变量来调整实验设置。对于更复杂的应用场景,配置管理可能依赖于代码内的默认值或外部环境变量。
示例配置调整
在使用bridge_*.py等脚本时,你可能需要预先设置一些环境变量或直接在脚本里更改参数。例如,可以通过修改脚本开头定义的变量来指定数据集路径、模型参数、训练轮次等。尽管没有独立的配置文件,开发者鼓励用户依据每个脚本中的注释指导,适当调整所需的参数以符合个人实验需求。
以上就是关于rLLM项目的基础架构、启动流程以及配置调优的基本指引。为了更深入地理解并高效运用此库,请详细阅读项目中的README.md文件和相关文档。
1698

被折叠的 条评论
为什么被折叠?



