特征散布开源项目最佳实践指南
feature-splatting 项目地址: https://gitcode.com/gh_mirrors/fe/feature-splatting
1. 项目介绍
特征散布(Feature Splatting)是一种用于3D场景重建和编辑的技术,本项目是基于Nerfstudio的官方实现。Nerfstudio是一个易于使用且高效的3D重建工具,本项目通过一些简化的方法,如使用MobileSAMV2代替SAM,以及使用简单的边界框选择高斯分布进行编辑,使得特征散布更加便捷和高效。本项目适用于快速检查特征质量,若需要重现完整的物理效果,请参考基于INRIA 3DGS的原始代码库。
2. 项目快速启动
环境准备
首先,需要创建一个独立的conda环境,并安装必要的依赖。
# 创建一个隔离的conda环境
conda create --name feature_splatting_ns -y python=3.8
conda activate feature_splatting_ns
# 安装必要的NS依赖
pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
conda install -c nvidia/label/cuda-11.8.0 cuda-toolkit
# 安装Nerfstudio
pip install nerfstudio
安装项目
可以通过以下命令安装本项目:
# 克隆并进入项目目录
pip install -e .
或者,仅尝试特征散布:
pip install git+https://github.com/vuer-ai/feature-splatting
训练示例
安装完成后,可以在任何Nerfstudio格式的数据集上训练特征散布。以下是一个示例命令:
# 下载数据集
ns-download-data nerfstudio --capture-name=poster
# 训练模型
ns-train feature-splatting --data data/nerfstudio/poster
请确保在编辑任何功能之前,暂停训练。否则,可能会导致竞争条件。
3. 应用案例和最佳实践
使用自定义文本查询
在Nerfstudio中,您可以为模型提供正文本查询,以可视化语言查询的响应热图。在训练期间,确保暂停训练,然后在“输出类型”下拉菜单中,选择“similarity”输出。
优化编辑工作流
为了更好地实现对象分割,建议移除简单的边界框选择方法,并实现更好的分割策略。此外,改进线程安全性也是关键,以避免编辑和训练同时进行时的竞争条件。
4. 典型生态项目
Nerfstudio
Nerfstudio是一个开源的神经网络渲染 studio,它提供了一个易于使用的界面和工具,用于创建高质量的三维模型和渲染。
MobileSAMV2
MobileSAMV2是一个用于特征提取的网络,专为移动设备优化,提供了高效的特征提取能力。
通过这些典型生态项目的结合,可以更好地实现特征散布技术在实际应用中的高效性和准确性。
feature-splatting 项目地址: https://gitcode.com/gh_mirrors/fe/feature-splatting
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考