SAITS 开源项目教程

SAITS 开源项目教程

SAITSThe official PyTorch implementation of the paper "SAITS: Self-Attention-based Imputation for Time Series". A fast and state-of-the-art (SOTA) model with efficiency for time series imputation (imputing multivariate incomplete time series containing missing data/values). https://arxiv.org/abs/2202.08516项目地址:https://gitcode.com/gh_mirrors/sa/SAITS

1. 项目的目录结构及介绍

SAITS(Self-Attention-based Imputation for Time Series)是一个基于自注意力机制的时间序列数据插补项目。以下是该项目的目录结构及其介绍:

SAITS/
├── data/
│   ├── processed/
│   └── raw/
├── models/
│   ├── __init__.py
│   └── saits.py
├── notebooks/
│   └── example.ipynb
├── scripts/
│   ├── train.py
│   └── evaluate.py
├── tests/
│   ├── __init__.py
│   └── test_saits.py
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
  • data/:存放数据文件,包括原始数据(raw/)和处理后的数据(processed/)。
  • models/:包含项目的模型定义,其中 saits.py 是核心模型文件。
  • notebooks/:存放 Jupyter Notebook 文件,用于交互式演示和实验。
  • scripts/:包含训练(train.py)和评估(evaluate.py)脚本。
  • tests/:包含测试文件,用于确保代码的正确性。
  • .gitignore:指定 Git 版本控制系统忽略的文件和目录。
  • LICENSE:项目的开源许可证。
  • README.md:项目说明文档。
  • requirements.txt:项目依赖的 Python 包列表。
  • setup.py:用于安装项目的脚本。

2. 项目的启动文件介绍

项目的启动文件主要位于 scripts/ 目录下:

  • train.py:用于训练 SAITS 模型的脚本。可以通过命令行参数指定训练数据、模型配置等。
  • evaluate.py:用于评估已训练模型的性能。可以指定测试数据和模型文件路径。

3. 项目的配置文件介绍

项目的配置文件主要通过命令行参数或环境变量进行配置。以下是一些常见的配置项:

  • data_path:指定训练或测试数据的路径。
  • model_path:指定模型文件的保存路径。
  • epochs:指定训练的迭代次数。
  • batch_size:指定每个批次的数据量。
  • learning_rate:指定优化器的学习率。

这些配置项可以在 train.pyevaluate.py 脚本中通过命令行参数进行设置。例如:

python scripts/train.py --data_path data/processed/train.csv --model_path models/saits.pth --epochs 100 --batch_size 32 --learning_rate 0.001

以上命令将使用 data/processed/train.csv 数据进行训练,并将训练好的模型保存到 models/saits.pth 文件中,训练迭代次数为 100,批次大小为 32,学习率为 0.001。

SAITSThe official PyTorch implementation of the paper "SAITS: Self-Attention-based Imputation for Time Series". A fast and state-of-the-art (SOTA) model with efficiency for time series imputation (imputing multivariate incomplete time series containing missing data/values). https://arxiv.org/abs/2202.08516项目地址:https://gitcode.com/gh_mirrors/sa/SAITS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邱进斌Olivia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值