SAITS 开源项目教程
1. 项目的目录结构及介绍
SAITS(Self-Attention-based Imputation for Time Series)是一个基于自注意力机制的时间序列数据插补项目。以下是该项目的目录结构及其介绍:
SAITS/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ └── saits.py
├── notebooks/
│ └── example.ipynb
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── tests/
│ ├── __init__.py
│ └── test_saits.py
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
data/:存放数据文件,包括原始数据(raw/)和处理后的数据(processed/)。models/:包含项目的模型定义,其中saits.py是核心模型文件。notebooks/:存放 Jupyter Notebook 文件,用于交互式演示和实验。scripts/:包含训练(train.py)和评估(evaluate.py)脚本。tests/:包含测试文件,用于确保代码的正确性。.gitignore:指定 Git 版本控制系统忽略的文件和目录。LICENSE:项目的开源许可证。README.md:项目说明文档。requirements.txt:项目依赖的 Python 包列表。setup.py:用于安装项目的脚本。
2. 项目的启动文件介绍
项目的启动文件主要位于 scripts/ 目录下:
train.py:用于训练 SAITS 模型的脚本。可以通过命令行参数指定训练数据、模型配置等。evaluate.py:用于评估已训练模型的性能。可以指定测试数据和模型文件路径。
3. 项目的配置文件介绍
项目的配置文件主要通过命令行参数或环境变量进行配置。以下是一些常见的配置项:
data_path:指定训练或测试数据的路径。model_path:指定模型文件的保存路径。epochs:指定训练的迭代次数。batch_size:指定每个批次的数据量。learning_rate:指定优化器的学习率。
这些配置项可以在 train.py 和 evaluate.py 脚本中通过命令行参数进行设置。例如:
python scripts/train.py --data_path data/processed/train.csv --model_path models/saits.pth --epochs 100 --batch_size 32 --learning_rate 0.001
以上命令将使用 data/processed/train.csv 数据进行训练,并将训练好的模型保存到 models/saits.pth 文件中,训练迭代次数为 100,批次大小为 32,学习率为 0.001。

1166

被折叠的 条评论
为什么被折叠?



