Paddle-Lite 基于 Intel OpenVINO 的 X86 服务器部署指南

Paddle-Lite 基于 Intel OpenVINO 的 X86 服务器部署指南

【免费下载链接】Paddle-Lite PaddlePaddle High Performance Deep Learning Inference Engine for Mobile and Edge (飞桨高性能深度学习端侧推理引擎) 【免费下载链接】Paddle-Lite 项目地址: https://gitcode.com/GitHub_Trending/pa/Paddle-Lite

技术背景

Paddle-Lite 作为飞桨的轻量化推理引擎,现已支持通过 Intel OpenVINO 工具套件在 X86 架构服务器上进行高效推理部署。这种集成方式利用了 OpenVINO 对 Intel CPU 的深度优化能力,能够显著提升模型在 X86 平台上的推理性能。

技术原理

Paddle-Lite 采用子图接入方式实现与 OpenVINO 的集成,其核心工作流程如下:

  1. 模型分析阶段:在线解析 Paddle 模型结构
  2. 算子转换阶段:将 Paddle 原生算子转换为统一的 NNAdapter 标准算子
  3. 网络构建阶段:通过 OpenVINO 组网 API (API 2.0) 构建推理网络
  4. 执行阶段:在线生成并执行优化后的模型

这种设计实现了 Paddle 模型到 OpenVINO 的无缝转换,同时保持了 Paddle 原有的易用性。

环境支持

硬件支持

  • 支持所有 Intel® CPU 处理器

操作系统支持

  • Ubuntu 18.04 LTS (64位)
  • Ubuntu 20.04 LTS (64位)

OpenVINO 版本支持

  • OpenVINO 2022.1

注意:OpenVINO 2022.1 对操作系统和硬件有特定要求,请确保您的环境满足这些要求。

已验证支持的模型

Paddle-Lite 通过 OpenVINO 支持广泛的 Paddle 预训练模型,涵盖多个应用领域:

图像分类模型

  • 经典模型:AlexNet、VGG16/19、ResNet 系列、Inception 系列
  • 轻量级模型:MobileNet 系列、ShuffleNetV2、GhostNet
  • 新型模型:ViT、DeiT、PP-LCNet

目标检测模型

  • 单阶段检测器:YOLOv3/v4 系列、PP-YOLO 系列、Picodet
  • SSD 系列:SSD-MobileNetV1/V3、SSD-VGG16

文本识别模型

  • OCR 相关:PP-OCR 系列、CRNN-mv3-CTC
  • 端到端模型:e2e_server_pgnetA

其他模型

  • 姿态估计:PP-TinyPose
  • 语义分割:DeepLabV3+、PP-HumanSeg 系列
  • NLP 模型:BERT、ERNIE 系列
  • 推荐系统:DeepFM、Wide&Deep

快速开始

环境准备

  1. 安装 OpenVINO Runtime 推荐使用 Installer 工具以安静模式安装:
    l_openvino_toolkit_p_2022.1.0.643_offline.sh -a -s --eula accept
    

    安装完成后,请确认环境变量已正确设置。

示例程序运行

  1. 下载示例程序包 获取包含图像分类示例的通用演示包。

  2. 运行图像分类示例

    # 仅使用 Intel x86 CPU
    ./run.sh resnet50_fp32_224 imagenet_224.txt test linux amd64
    
    # 使用 Intel x86 CPU + OpenVINO 加速
    ./run.sh resnet50_fp32_224 imagenet_224.txt test linux amd64 intel_openvino
    
  3. 性能对比 通过对比可以发现,使用 OpenVINO 加速后,ResNet50 的推理时间从 158ms 降低到 16ms 左右,性能提升显著。

自定义测试

  • 更换测试图片:将图片放入指定目录并更新 list.txt 文件
  • 重新编译示例:执行 ./build.sh linux amd64

高级定制

编译支持 OpenVINO 的 Paddle-Lite

  1. 获取源码

    git clone Paddle-Lite 仓库
    cd Paddle-Lite
    git checkout 指定版本标签
    
  2. 完整编译

    ./lite/tools/build_linux.sh \
      --arch=x86 \
      --with_extra=ON \
      --with_log=ON \
      --with_exception=ON \
      --with_nnadapter=ON \
      --nnadapter_with_intel_openvino=ON \
      --nnadapter_intel_openvino_sdk_root=/opt/intel/openvino_2022 \
      full_publish
    
  3. 更新部署库 将编译生成的头文件和库文件替换到示例程序中相应位置。

性能优化建议

  1. 模型选择:优先选择已验证支持的模型以获得最佳兼容性
  2. 输入尺寸:保持与模型训练时相同的输入尺寸
  3. 批处理:适当增加批处理大小以提高吞吐量
  4. 线程设置:根据 CPU 核心数合理配置 OpenVINO 线程数

常见问题

  1. 环境变量问题:确保 OpenVINO 的环境变量已正确设置
  2. 模型兼容性:遇到不支持的算子时,可尝试其他模型或联系开发者
  3. 性能异常:检查 CPU 使用率和温度是否正常

通过本指南,您应该能够在 X86 服务器上成功部署 Paddle 模型并利用 Intel OpenVINO 获得显著的性能提升。如需更详细的技术支持,建议查阅相关文档或联系开发者社区。

【免费下载链接】Paddle-Lite PaddlePaddle High Performance Deep Learning Inference Engine for Mobile and Edge (飞桨高性能深度学习端侧推理引擎) 【免费下载链接】Paddle-Lite 项目地址: https://gitcode.com/GitHub_Trending/pa/Paddle-Lite

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值