pylut 开源项目教程
pylutCreate and Modify 3D LUTs in Python!项目地址:https://gitcode.com/gh_mirrors/py/pylut
项目介绍
pylut 是一个用于处理颜色查找表(LUT)的 Python 库。LUT 在图像处理和视频编辑中广泛使用,用于颜色校正和风格化。pylut 提供了创建、编辑和应用 LUT 的功能,使得用户可以在 Python 环境中轻松处理颜色数据。
项目快速启动
安装
首先,你需要安装 pylut 库。你可以通过 pip 来安装:
pip install pylut
基本使用
以下是一个简单的示例,展示如何加载一个 LUT 文件并应用到图像上:
import pylut
from PIL import Image
# 加载 LUT 文件
lut = pylut.LUT.from_cube("example.cube")
# 打开图像
image = Image.open("input.jpg")
# 应用 LUT
result_image = lut.apply(image)
# 保存结果图像
result_image.save("output.jpg")
应用案例和最佳实践
案例一:视频编辑中的颜色校正
在视频编辑过程中,颜色校正是一个重要的步骤。使用 pylut,你可以为视频的每一帧应用相同的 LUT,从而实现一致的颜色调整。
import pylut
import cv2
# 加载 LUT 文件
lut = pylut.LUT.from_cube("color_correction.cube")
# 打开视频文件
video = cv2.VideoCapture("input_video.mp4")
# 获取视频的宽度和高度
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 创建输出视频文件
out = cv2.VideoWriter("output_video.mp4", cv2.VideoWriter_fourcc(*'mp4v'), 30, (width, height))
while True:
ret, frame = video.read()
if not ret:
break
# 将 OpenCV 图像转换为 PIL 图像
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# 应用 LUT
result_image = lut.apply(pil_image)
# 将 PIL 图像转换回 OpenCV 图像
result_frame = cv2.cvtColor(np.array(result_image), cv2.COLOR_RGB2BGR)
# 写入输出视频
out.write(result_frame)
video.release()
out.release()
案例二:图像风格化
你可以使用 pylut 来创建和应用自定义的 LUT,从而实现图像的风格化效果。例如,你可以创建一个 LUT 来模拟复古胶片的效果。
import pylut
from PIL import Image
# 创建一个自定义的 LUT
lut = pylut.LUT.from_function(lambda r, g, b: (r * 0.8, g * 0.9, b * 1.2))
# 打开图像
image = Image.open("input.jpg")
# 应用 LUT
result_image = lut.apply(image)
# 保存结果图像
result_image.save("output.jpg")
典型生态项目
pylut 作为一个处理 LUT 的库,可以与其他图像处理和视频编辑工具结合使用。以下是一些典型的生态项目:
- OpenCV:一个强大的计算机视觉库,可以与 pylut 结合使用来进行高级的图像和视频处理。
- FFmpeg:一个跨平台的视频处理工具,可以与 pylut 结合使用来进行视频的批量处理。
- Pillow:Python 的图像处理库,可以与 pylut 结合使用来进行图像的加载和保存。
通过这些生态项目的结合,你可以构建更加复杂和强大的图像和视频处理流程。
pylutCreate and Modify 3D LUTs in Python!项目地址:https://gitcode.com/gh_mirrors/py/pylut

869

被折叠的 条评论
为什么被折叠?



