30分钟上手数据可视化:Matplotlib与Seaborn实战指南

30分钟上手数据可视化:Matplotlib与Seaborn实战指南

【免费下载链接】100-Days-Of-ML-Code MLEveryday/100-Days-Of-ML-Code: 是一项关于机器学习的开源项目,旨在帮助开发者通过 100 天的代码实践,掌握机器学习的知识和技能。该项目包含了各种机器学习算法的实现和讲解,以及相关文档和代码注释,对于初学者和有经验的开发者都具有很高的参考价值。 【免费下载链接】100-Days-Of-ML-Code 项目地址: https://gitcode.com/gh_mirrors/100/100-Days-Of-ML-Code

你还在为机器学习模型结果难以解释而烦恼?还在纠结如何让数据规律一目了然?本文将通过100-Days-Of-ML-Code项目中的实战案例,带你掌握数据可视化(Data Visualization)核心技能,读完你将能够:

  • 使用Matplotlib绘制基础图表
  • 利用Seaborn美化数据呈现
  • 掌握机器学习结果可视化技巧
  • 学会从可视化图表中洞察数据规律

为什么数据可视化如此重要

在机器学习工作流中,数据可视化是不可或缺的环节。它能够帮助我们:

  • 快速识别数据分布特征
  • 发现异常值和数据缺失
  • 直观展示模型性能
  • 有效传达分析结果

项目中的Info-graphs/Day 1.jpg展示了数据预处理与可视化的关系,可见可视化在整个机器学习流程中的重要地位。

Matplotlib基础入门

Matplotlib是Python最基础也最常用的可视化库,项目中多个文件如Code/Day 2_Simple_Linear_Regression.py都使用了它来绘制图表。

基本用法

import matplotlib.pyplot as plt

# 准备数据
X = [1, 2, 3, 4, 5]
y = [2, 4, 5, 4, 5]

# 创建图表
plt.figure(figsize=(8, 5))
plt.scatter(X, y, color='red')  # 散点图
plt.plot(X, y, color='blue')    # 折线图
plt.title('简单数据可视化示例')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.show()

机器学习中的应用

Code/Day 2_Simple_Linear_Regression.ipynb中,Matplotlib被用于展示线性回归模型的拟合效果。该笔记本中的可视化结果帮助我们直观理解了模型预测值与实际值之间的关系。

![线性回归可视化](https://raw.gitcode.com/gh_mirrors/100/100-Days-Of-ML-Code/raw/04e7076df2c8f99f9572f558a6e0c4489a030c04/Info-graphs/Day 2.jpg?utm_source=gitcode_repo_files)

Seaborn高级应用

虽然项目中直接使用Seaborn的代码较少,但结合Matplotlib可以创建更具吸引力的统计图表。Seaborn特别适合展示数据分布和关系。

数据分布可视化

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

# 加载数据
data = pd.read_csv('datasets/studentscores.csv')

# 创建直方图和核密度图
plt.figure(figsize=(10, 6))
sns.histplot(data['Hours'], kde=True, color='green')
plt.title('学习时间分布')
plt.xlabel('学习时间(小时)')
plt.ylabel('频率')
plt.show()

特征关系可视化

通过Seaborn的pairplot功能,可以快速查看多个特征之间的关系:

# 分析多个特征间的关系
sns.pairplot(data, height=2)
plt.suptitle('特征关系可视化', y=1.02)
plt.show()

机器学习结果可视化

项目中大量使用了可视化来展示机器学习模型的效果,例如Code/Day 13_SVM.py中的支持向量机决策边界可视化。

决策边界可视化

from matplotlib.colors import ListedColormap

# 绘制决策边界
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01),
                     np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha=0.75, cmap=ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())

# 绘制训练集散点图
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c=ListedColormap(('red', 'green'))(i), label=j)
plt.title('SVM分类器 (训练集)')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.legend()
plt.show()

![SVM决策边界](https://raw.gitcode.com/gh_mirrors/100/100-Days-Of-ML-Code/raw/04e7076df2c8f99f9572f558a6e0c4489a030c04/Info-graphs/Day 42-1.png?utm_source=gitcode_repo_files)

可视化最佳实践

选择合适的图表类型

根据数据类型和分析目的选择合适的图表:

  • 比较数据:柱状图、箱线图
  • 展示趋势:折线图、面积图
  • 分析分布:直方图、密度图
  • 研究关系:散点图、热力图

遵循设计原则

  • 保持简洁:避免不必要的装饰
  • 注重对比:使用颜色和大小突出重点
  • 确保清晰:标签和标题明确
  • 保持一致:风格统一,便于比较

![可视化最佳实践](https://raw.gitcode.com/gh_mirrors/100/100-Days-Of-ML-Code/raw/04e7076df2c8f99f9572f558a6e0c4489a030c04/Info-graphs/Day 3.png?utm_source=gitcode_repo_files)

总结与下一步

通过本文学习,你已经掌握了Matplotlib和Seaborn的基本用法以及在机器学习中的应用。建议接下来:

  1. 深入学习Other Docs/速查手册/Python数据科学速查表 - Matplotlib 绘图.pdfOther Docs/速查手册/Python数据科学速查表 - Seaborn.pdf
  2. 尝试修改Code/Day 34_Random_Forests.py中的可视化代码,改变图表样式
  3. 探索Code/Day 40.ipynb中的高级可视化技巧

希望这篇指南能帮助你更好地通过可视化理解和展示数据!如果你觉得有用,请点赞收藏,并关注项目更新获取更多机器学习实战技巧。

![数据可视化全流程](https://raw.gitcode.com/gh_mirrors/100/100-Days-Of-ML-Code/raw/04e7076df2c8f99f9572f558a6e0c4489a030c04/Info-graphs/Day 4.jpg?utm_source=gitcode_repo_files)

【免费下载链接】100-Days-Of-ML-Code MLEveryday/100-Days-Of-ML-Code: 是一项关于机器学习的开源项目,旨在帮助开发者通过 100 天的代码实践,掌握机器学习的知识和技能。该项目包含了各种机器学习算法的实现和讲解,以及相关文档和代码注释,对于初学者和有经验的开发者都具有很高的参考价值。 【免费下载链接】100-Days-Of-ML-Code 项目地址: https://gitcode.com/gh_mirrors/100/100-Days-Of-ML-Code

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值