推荐开源项目:ptcpdump —— 基于eBPF的高效网络抓包工具
ptcpdump Process-aware, eBPF-based tcpdump 项目地址: https://gitcode.com/gh_mirrors/pt/ptcpdump
项目介绍
ptcpdump 是一个基于 eBPF 的 tcpdump 实现,它在传统 tcpdump 的基础上增加了一个独特的功能:尽可能地为每个数据包添加进程信息作为注释。这一灵感来源于 jschwinger233/skbdump 项目。

项目技术分析
ptcpdump 利用 eBPF(扩展伯克利包过滤器)技术在内核空间直接应用过滤器,从而实现对网络数据包的高效捕获和分析。eBPF 的优势在于其能够在内核层面进行高效的数据处理,避免了传统方法中用户空间与内核空间频繁切换的开销。
主要技术亮点:
- 进程感知:能够识别与数据包相关的进程信息,支持按进程 ID 和进程名称过滤数据包。
- 容器和 Kubernetes 感知:能够识别与数据包相关的容器和 Pod 信息,支持 Docker Engine 和 containerd 多种容器运行时,并支持按容器 ID、容器名称和 Pod 名称过滤数据包。
- 支持 pcap-filter 语法:使用熟悉的 pcap-filter 语法进行数据包过滤。
- 内核空间过滤:直接在内核空间应用过滤器,提高抓包效率。
- PcapNG 格式支持:支持将捕获的数据包保存为 PcapNG 格式,便于使用 Wireshark 等第三方工具进行离线分析。
项目及技术应用场景
ptcpdump 适用于以下场景:
- 网络故障诊断:通过捕获和分析网络数据包,快速定位网络故障。
- 安全审计:监控和分析网络流量,识别潜在的安全威胁。
- 性能优化:分析网络流量,优化网络配置和应用程序性能。
- 容器和 Kubernetes 环境监控:在容器化环境中,追踪特定容器或 Pod 的网络活动。
- 开发调试:开发者可以实时查看应用程序的网络通信情况,辅助调试。
项目特点
1. 高效性
基于 eBPF 技术,ptcpdump 能够在内核空间直接处理数据包,大幅提升抓包效率,减少资源消耗。
2. 功能丰富
支持进程、容器和 Kubernetes 多维度的信息展示和过滤,满足多样化的抓包需求。
3. 易用性
提供丰富的命令行参数和示例,用户可以轻松上手,快速进行数据包捕获和分析。
4. 兼容性强
支持多种容器运行时,适用于多种网络环境和操作系统版本。
5. 数据格式灵活
支持将捕获的数据包保存为 PcapNG 格式,便于使用主流的网络分析工具进行进一步分析。
安装和使用
安装要求
- Linux 内核版本 >= 5.2
安装方法
可以从 发布页面 下载适用于 x86_64 和 arm64 的静态链接可执行文件。
使用示例
过滤数据包
sudo ptcpdump -i eth0 tcp
sudo ptcpdump -i eth0 -A -v tcp and port 80 and host 10.10.1.1
sudo ptcpdump -i eth0 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0'
多接口捕获
sudo ptcpdump -i eth0 -i lo
按进程过滤
sudo ptcpdump -i any --pid 1234 --pid 233 -f
sudo ptcpdump -i any --pname curl
捕获指定进程的网络活动
sudo ptcpdump -i any -- curl ubuntu.com
按容器过滤
sudo ptcpdump -i any --container-id 36f0310403b1
sudo ptcpdump -i any --container-name test
按 Pod 过滤
sudo ptcpdump -i any --pod-name test.default
保存数据为 PcapNG 格式
sudo ptcpdump -i any -w demo.pcapng
sudo ptcpdump -i any -w - port 80 | tcpdump -n -r -
sudo ptcpdump -i any -w - port 80 | tshark -r -
总结
ptcpdump 是一款功能强大、高效易用的网络抓包工具,特别适用于需要深入分析网络流量和进程关系的场景。无论是网络运维、安全审计还是开发调试,ptcpdump 都能提供强大的支持。欢迎大家尝试和使用这款优秀的开源工具!
ptcpdump Process-aware, eBPF-based tcpdump 项目地址: https://gitcode.com/gh_mirrors/pt/ptcpdump
2万+

被折叠的 条评论
为什么被折叠?



