DualStyleGAN 项目使用教程
DualStyleGAN 项目地址: https://gitcode.com/gh_mirrors/du/DualStyleGAN
1. 项目介绍
DualStyleGAN 是一个基于 PyTorch 的开源项目,旨在实现高分辨率的人像风格迁移。该项目在 CVPR 2022 中被提出,通过引入一种新的 DualStyleGAN 模型,能够在有限的训练数据下实现高质量的艺术人像生成。DualStyleGAN 通过区分内容和风格,分别使用内在风格路径和新的外在风格路径来实现风格迁移。此外,项目还引入了一种渐进式微调方案,以平滑地将模型的生成空间转换到目标域。
2. 项目快速启动
2.1 环境准备
首先,克隆项目仓库并进入项目目录:
git clone https://github.com/williamyang1991/DualStyleGAN.git
cd DualStyleGAN
接下来,使用 Anaconda 创建并激活虚拟环境:
conda env create -f environment/dualstylegan_env.yaml
conda activate dualstylegan_env
2.2 数据准备
下载所需的卡通、漫画和动漫数据集,并按照项目文档中的说明进行数据准备。
2.3 模型推理
使用提供的 Jupyter Notebook 进行模型推理:
jupyter notebook notebooks/inference_playground.ipynb
在 Notebook 中,下载预训练模型并运行推理代码。如果没有 GPU,可以在 Notebook 中设置 device = 'cpu'。
3. 应用案例和最佳实践
3.1 风格迁移
DualStyleGAN 可以用于将卡通风格迁移到人像照片上。以下是一个简单的风格迁移示例:
python style_transfer.py --style cartoon --style_id 10 --name cartoon_transfer
3.2 艺术人像生成
通过调整风格权重,可以生成不同风格的艺术人像。以下是一个生成漫画风格人像的示例:
python style_transfer.py --style caricature --name caricature_transfer --style_id 187 --weight 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4. 典型生态项目
4.1 Huggingface Spaces
DualStyleGAN 的 Web 演示已经集成到 Huggingface Spaces 中,使用 Gradio 构建。用户可以通过访问 Huggingface Spaces 来体验在线风格迁移。
4.2 StableDiffusion
DualStyleGAN 还支持与 StableDiffusion 结合,生成幻想、插图和厚涂风格的人像。用户可以通过下载相应的预训练模型并进行推理来体验这些风格。
通过以上步骤,您可以快速上手 DualStyleGAN 项目,并利用其强大的风格迁移功能进行艺术创作。
DualStyleGAN 项目地址: https://gitcode.com/gh_mirrors/du/DualStyleGAN
1176

被折叠的 条评论
为什么被折叠?



