AdaptivePose 开源项目使用教程
AdaptivePose 项目地址: https://gitcode.com/gh_mirrors/ad/AdaptivePose
1. 项目介绍
AdaptivePose 是一个高效且强大的单阶段多人姿态估计框架,由北京邮电大学开发。该项目在 AAAI 2022 上发表,并在 Arxiv 上发布了 AdaptivePose++ 的论文。AdaptivePose 通过使用中心特征和自适应人体部位相关点的特征,充分编码了多样的人体姿态,从而在速度和准确性上优于现有的自底向上和单阶段姿态估计方法。
主要特点
- 简单高效:单阶段多人姿态估计,无需复杂的分组和后处理。
- 通用性强:在拥挤和 3D 场景中表现出色。
- 速度快:推理速度快,适用于实时应用。
- 性能强:在 COCO 和 CrowdPose 数据集上表现优异。
2. 项目快速启动
环境准备
首先,下载并解压预配置的环境文件:
wget https://github.com/buptxyb666/AdaptivePose/raw/master/torch12.tar.gz
tar -xzf torch12.tar.gz
source prepare_env.sh
或者,您也可以手动配置环境:
source prepare_env2.sh
数据准备
按照以下步骤设置数据集:
cd AdaptivePose
mkdir -p data/coco
mkdir -p data/crowdpose
ln -s /path_to_coco_dataset/ data/coco/
ln -s /path_to_crowdpose_dataset/ data/crowdpose/
预训练模型下载
下载预训练模型并放置在 AdaptivePose/models 目录下:
mkdir -p models
wget https://github.com/buptxyb666/AdaptivePose/raw/master/pretrain_models/model_name.pth -O models/model_name.pth
训练与测试
使用以下命令进行训练和测试:
DLA34 模型,输入分辨率 512 像素
cd src
bash main_dla34_coco512.sh
HRNet-W32 模型,输入分辨率 512 像素
cd src
bash main_hrnet32_coco512.sh
HRNet-W48 模型,输入分辨率 640 像素
cd src
bash main_hrnet48_coco640.sh
3. 应用案例和最佳实践
实时姿态估计
AdaptivePose 适用于需要实时姿态估计的应用场景,如体育分析、人机交互和监控系统。通过其高效的单阶段设计,AdaptivePose 能够在保持高准确性的同时,实现快速的推理速度。
拥挤场景下的姿态估计
在拥挤场景中,传统的姿态估计方法往往表现不佳。AdaptivePose 通过其自适应的部位点特征提取,能够有效处理多人重叠的情况,提供准确的姿态估计结果。
4. 典型生态项目
CenterNet
AdaptivePose 基于 CenterNet 的代码库开发,CenterNet 是一个用于目标检测、姿态估计和 3D 目标检测的通用框架。通过结合 CenterNet 的强大功能,AdaptivePose 进一步优化了多人姿态估计的性能。
COCO 和 CrowdPose 数据集
AdaptivePose 在 COCO 和 CrowdPose 数据集上进行了广泛的测试和验证。这些数据集提供了丰富的多人姿态标注,是评估姿态估计模型性能的重要基准。
通过本教程,您可以快速上手 AdaptivePose 项目,并将其应用于各种实际场景中。希望本教程能帮助您更好地理解和使用 AdaptivePose,提升您的姿态估计任务的效率和准确性。
AdaptivePose 项目地址: https://gitcode.com/gh_mirrors/ad/AdaptivePose
7240

被折叠的 条评论
为什么被折叠?



