HiVT 项目使用教程
1. 项目的目录结构及介绍
HiVT 项目的目录结构如下:
HiVT/
├── assets/
├── checkpoints/
├── datamodules/
├── datasets/
├── losses/
├── metrics/
├── models/
├── .gitignore
├── LICENSE
├── README.md
├── eval.py
├── train.py
└── utils.py
目录介绍
assets/: 存放项目相关的静态资源文件。checkpoints/: 存放训练过程中的检查点文件。datamodules/: 数据模块,包含数据加载和预处理的代码。datasets/: 存放数据集文件。losses/: 定义损失函数的代码。metrics/: 定义评估指标的代码。models/: 存放模型定义的代码。eval.py: 评估模型的脚本。train.py: 训练模型的脚本。utils.py: 包含一些工具函数。
2. 项目的启动文件介绍
train.py
train.py 是用于启动训练过程的脚本。它包含了模型训练的主要逻辑,包括数据加载、模型初始化、损失函数定义、优化器设置等。
eval.py
eval.py 是用于评估模型的脚本。它加载训练好的模型,并对验证集进行评估,输出评估结果。
3. 项目的配置文件介绍
HiVT 项目没有显式的配置文件,但可以通过命令行参数或环境变量来配置训练和评估过程。例如,在 train.py 和 eval.py 中,可以通过命令行参数指定数据集路径、模型参数、训练轮数等。
例如,启动训练过程的命令可能如下:
python train.py --data_dir ./datasets --batch_size 32 --epochs 100
通过这种方式,可以灵活地配置和调整训练和评估过程。
以上是 HiVT 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置方法。希望这些信息能帮助你更好地理解和使用该项目。
2034

被折叠的 条评论
为什么被折叠?



