深度任意:基于TensorRT的实时深度估计

深度任意:基于TensorRT的实时深度估计

depth-anything-tensorrtUnofficial cpp implementation of depth-anything model using tensorrt api.项目地址:https://gitcode.com/gh_mirrors/de/depth-anything-tensorrt


项目介绍

深度任意-TensorRT 是一个开源项目,致力于实现高效的实时深度估计,适用于广泛的场景和人群。该库利用NVIDIA的TensorRT优化深度学习模型,特别是针对Depth-Anything模型的V1和V2版本,实现了在GPU上的加速推理。支持通过C++和Python进行集成,显著减少了从模型到实际部署的时间,特别是在需要处理图像或视频数据流时。项目致力于提供高性能和低延迟的深度估计解决方案。

快速启动

C++ 环境快速启动

首先,确保你的环境已经配置了CUDA和TensorRT。然后,按照以下步骤操作:

  1. 克隆项目

    git clone https://github.com/spacewalk01/depth-anything-tensorrt.git
    
  2. 构建并运行(以Depth-Anything-V1为例)

    cd depth-anything-tensorrt
    # 根据docs/INSTALL.md设置好依赖
    # 构建引擎
    depth-anything-tensorrt exe your_onnx_model.onnx
    # 使用构建好的引擎进行推断
    depth-anything-tensorrt exe depth_anything_vitb14.engine your_image.jpg
    

Python 快速启动

对于Python用户,你需要安装必要的依赖项,然后执行以下命令来推断单个图像的深度:

  1. 安装依赖

    cd depth-anything-tensorrt/python
    pip install -r requirements.txt
    
  2. 运行深度推断

    python trt_infer.py --engine /path/to/trt_engine --img your_image.jpg --outdir output_folder
    

应用案例与最佳实践

  • 实时视频流分析:结合流媒体技术,可以在监控系统中实时计算场景中的深度信息,用于安全监控和自动报警。
  • 无人机导航:无人机可以利用此技术进行自主飞行,理解周围环境的三维结构,提高避障能力。
  • 增强现实:提供更精确的物体深度信息,增强用户体验,使得虚拟物体能够更加自然地融入真实世界。

在实践中,最佳做法包括优化模型输入大小以匹配目标硬件的最佳性能点,以及利用Warm-up机制来提升首次推理速度。

典型生态项目

深度学习与计算机视觉社区广泛采纳了类似项目,推动了一系列创新应用。例如,结合物体识别系统,可以实现基于深度的物体距离估算;在自动驾驶车辆中,这样的技术用于即时创建车辆周围的环境地图,辅助决策。此外,TensorRT社区不断贡献新模型和优化策略,支持如空间布局理解3D重建等复杂任务,拓宽了深度学习在实际应用中的边界。


通过以上教程,开发者可以轻松上手并应用《深度任意-TensorRT》于自己的项目中,无论是科研还是工业级应用,它都提供了强大的工具支持。记得持续关注项目更新,获取最新功能和性能改进。

depth-anything-tensorrtUnofficial cpp implementation of depth-anything model using tensorrt api.项目地址:https://gitcode.com/gh_mirrors/de/depth-anything-tensorrt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裘旻烁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值