NeRF-Editing: 神经辐射场几何编辑
项目基础介绍和主要编程语言
NeRF-Editing 是一个开源项目,专注于神经辐射场(NeRF)的几何编辑。该项目主要使用 Python 和 C++ 进行开发。Python 用于实现核心算法和数据处理,而 C++ 则用于高性能计算和底层优化。
项目核心功能
NeRF-Editing 的核心功能是允许用户对神经辐射场进行几何编辑,而无需重新训练网络。具体来说,该项目通过以下步骤实现几何编辑:
- 显式网格表示与隐式神经表示的对应:建立显式网格表示与目标场景的隐式神经表示之间的对应关系。
 - 网格变形:用户可以使用现有的网格变形方法对场景的网格表示进行变形。
 - 光线弯曲:通过引入四面体网格作为代理,根据用户的编辑对相机光线进行弯曲,从而获得编辑后场景的渲染结果。
 
项目最近更新的功能
最近,NeRF-Editing 项目更新了以下功能:
- 简化网格生成:提供了简化网格的生成功能,以提高渲染效率。
 - 四面体网格构建:引入了 TetWild 工具,用于构建四面体网格,进一步优化几何编辑的精度。
 - 编辑传播:实现了编辑传播功能,允许用户对提取的网格进行变形,并将变形结果应用于神经辐射场。
 - 固定相机渲染:新增了固定相机渲染功能,使用户能够在固定视角下生成连续的编辑结果。
 
通过这些更新,NeRF-Editing 项目在几何编辑的灵活性和效率上都有了显著提升,为用户提供了更加强大的工具来处理和编辑神经辐射场。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考
      
          
            


            