public-image-mirror高可用测试:故障演练实战指南

public-image-mirror高可用测试:故障演练实战指南

【免费下载链接】public-image-mirror 很多镜像都在国外。比如 gcr 。国内下载很慢,需要加速。 【免费下载链接】public-image-mirror 项目地址: https://gitcode.com/GitHub_Trending/pu/public-image-mirror

引言:为什么镜像加速服务需要高可用性?

在云原生时代,容器镜像已成为应用交付的标准方式。然而,国内用户访问国外镜像仓库(如gcr.io、docker.io、quay.io等)时常面临网络延迟、连接不稳定等问题。public-image-mirror项目正是为了解决这一痛点而生,它通过智能镜像同步和缓存机制,为国内开发者提供高速、稳定的镜像加速服务。

但作为关键基础设施,镜像加速服务的高可用性至关重要。一次服务中断可能导致:

  • 持续集成/持续部署(CI/CD)流水线中断
  • 开发环境无法正常构建
  • 生产环境应用更新受阻
  • 团队协作效率大幅下降

本文将深入探讨public-image-mirror的高可用测试方法和故障演练实践,帮助您构建稳定可靠的镜像加速服务体系。

高可用架构设计原理

核心架构组件

mermaid

关键高可用特性

特性实现方式故障恢复时间
多节点负载均衡Nginx/Haproxy + Keepalived< 30秒
本地缓存冗余多副本镜像存储实时切换
上游源站容错多源站故障转移< 1分钟
数据持久化对象存储备份数据零丢失

故障演练场景设计

场景一:单节点故障模拟

测试目标:验证负载均衡器能够正确检测节点故障并自动切换

# 模拟节点故障
#!/bin/bash
NODE_IP="192.168.1.100"
PORT="5000"

# 1. 停止容器服务
ssh $NODE_IP "docker stop mirror-proxy"

# 2. 监控负载均衡状态
watch -n 1 'curl -s http://loadbalancer:8080/health | jq .'

# 3. 验证服务连续性
while true; do
    curl -s http://loadbalancer:5000/v2/_catalog > /dev/null
    if [ $? -eq 0 ]; then
        echo "服务正常: $(date)"
    else
        echo "服务中断: $(date)"
        break
    fi
    sleep 1
done

场景二:网络分区测试

测试目标:验证系统在网络隔离情况下的容错能力

# 模拟网络分区
#!/bin/bash
# 使用iptables模拟网络中断
NODE_IP="192.168.1.101"

# 阻断出站流量
ssh $NODE_IP "iptables -A OUTPUT -p tcp --dport 5000 -j DROP"

# 监控节点状态
echo "监控节点健康状态..."
watch -n 1 'curl -s http://$NODE_IP:8080/health | jq .status'

# 验证其他节点是否接管流量
TEST_IMAGE="docker.io/library/nginx:alpine"
curl -s http://loadbalancer:5000/v2/$TEST_IMAGE/tags/list | jq .tags[]

场景三:上游源站故障

测试目标:测试上游镜像仓库不可用时的降级策略

# 上游源站故障模拟
#!/bin/bash
UPSTREAM="docker.io"

# 模拟DNS解析故障
echo "127.0.0.1 $UPSTREAM" >> /etc/hosts

# 测试镜像拉取行为
IMAGE="library/nginx:alpine"

# 尝试从缓存获取
curl -s -I http://mirror-service:5000/v2/$IMAGE/manifests/$TAG \
    -H "Accept: application/vnd.docker.distribution.manifest.v2+json"

# 检查同步队列状态
curl -s http://queue-service:8080/status | jq .pending_jobs

监控与告警体系

关键监控指标

mermaid

Prometheus监控配置示例

# mirror-monitor.yml
groups:
- name: mirror-service
  rules:
  - alert: HighErrorRate
    expr: rate(nginx_ingress_controller_requests{status=~"5.."}[5m]) / rate(nginx_ingress_controller_requests[5m]) > 0.05
    for: 10m
    labels:
      severity: critical
    annotations:
      summary: "高错误率报警"
      description: "镜像服务错误率超过5%,当前值: {{ $value }}"
  
  - alert: CacheMissRateHigh
    expr: rate(mirror_cache_misses_total[5m]) / rate(mirror_cache_requests_total[5m]) > 0.3
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "缓存命中率低"
      description: "缓存未命中率超过30%,需要检查同步状态"
  
  - alert: SyncLagTooHigh
    expr: mirror_sync_lag_seconds > 3600
    for: 15m
    labels:
      severity: warning
    annotations:
      summary: "同步延迟过高"
      description: "镜像同步延迟超过1小时,当前延迟: {{ $value }}秒"

自动化测试框架

基于GitHub Actions的CI/CD流水线

# .github/workflows/ha-test.yml
name: High Availability Tests

on:
  schedule:
    - cron: '0 2 * * *'  # 每天凌晨2点执行
  workflow_dispatch:      # 支持手动触发

jobs:
  ha-testing:
    runs-on: ubuntu-latest
    steps:
    - name: Checkout code
      uses: actions/checkout@v4

    - name: Setup test environment
      run: |
        docker-compose -f docker-compose.test.yml up -d
        sleep 30  # 等待服务启动

    - name: Run node failure test
      run: ./hack/test-node-failure.sh

    - name: Run network partition test
      run: ./hack/test-network-partition.sh

    - name: Run upstream failure test
      run: ./hack/test-upstream-failure.sh

    - name: Generate test report
      run: |
        ./hack/generate-report.sh > report.md
        echo "## 高可用测试报告" >> $GITHUB_STEP_SUMMARY
        cat report.md >> $GITHUB_STEP_SUMMARY

    - name: Cleanup
      if: always()
      run: docker-compose -f docker-compose.test.yml down

测试用例管理

# test_ha_scenarios.py
import unittest
import requests
import time

class TestHighAvailability(unittest.TestCase):
    
    def setUp(self):
        self.base_url = "http://loadbalancer:5000"
        self.test_image = "library/nginx"
        
    def test_single_node_failure(self):
        """测试单节点故障场景"""
        # 获取初始健康节点数
        initial_nodes = self._get_healthy_nodes_count()
        
        # 模拟节点故障
        self._simulate_node_failure("node-2")
        
        # 验证负载均衡切换
        time.sleep(10)  # 等待负载均衡器检测
        current_nodes = self._get_healthy_nodes_count()
        
        self.assertEqual(current_nodes, initial_nodes - 1)
        self._verify_service_continuity()
        
    def test_cache_consistency(self):
        """测试缓存一致性"""
        # 拉取测试镜像
        response = requests.get(f"{self.base_url}/v2/{self.test_image}/tags/list")
        initial_tags = response.json().get('tags', [])
        
        # 模拟缓存失效
        self._invalidate_cache(self.test_image)
        
        # 验证缓存重建
        response = requests.get(f"{self.base_url}/v2/{self.test_image}/tags/list")
        rebuilt_tags = response.json().get('tags', [])
        
        self.assertEqual(set(initial_tags), set(rebuilt_tags))
    
    def _get_healthy_nodes_count(self):
        """获取健康节点数量"""
        response = requests.get("http://loadbalancer:8080/health")
        return len([node for node in response.json() if node['status'] == 'healthy'])
    
    def _simulate_node_failure(self, node_name):
        """模拟节点故障"""
        # 实现节点故障模拟逻辑
        pass
    
    def _verify_service_continuity(self):
        """验证服务连续性"""
        for _ in range(10):
            try:
                response = requests.get(f"{self.base_url}/v2/")
                if response.status_code == 200:
                    return True
            except:
                pass
            time.sleep(1)
        self.fail("服务连续性验证失败")
    
    def _invalidate_cache(self, image_name):
        """使缓存失效"""
        # 实现缓存失效逻辑
        pass

if __name__ == '__main__':
    unittest.main()

故障恢复策略与SLA保障

恢复时间目标(RTO)与恢复点目标(RPO)

故障类型RTO目标RPO目标恢复策略
单节点故障< 30秒0数据丢失自动负载均衡切换
网络分区< 1分钟0数据丢失多可用区部署
上游源站故障< 5分钟最终一致性缓存服务+队列重试
数据存储故障< 10分钟< 5分钟数据对象存储多副本

容灾演练 checklist

## 月度容灾演练清单

### 预演练准备
- [ ] 通知相关团队演练时间
- [ ] 备份当前系统状态
- [ ] 准备演练脚本和工具
- [ ] 设置演练监控仪表板

### 演练执行
- [ ] 单节点故障注入与恢复
- [ ] 网络分区模拟与修复
- [ ] 上游源站故障测试
- [ ] 缓存一致性验证

### 演练后处理
- [ ] 系统状态恢复验证
- [ ] 演练结果记录与分析
- [ ] 改进措施制定
- [ ] 演练报告编写与分享

性能优化与容量规划

容量规划参考指标

mermaid

性能优化策略

  1. 缓存优化

    • 使用LRU(最近最少使用)缓存淘汰算法
    • 实现分层缓存架构(内存->SSD->HDD)
    • 设置合理的TTL(Time To Live)策略
  2. 网络优化

    • 启用HTTP/2协议支持
    • 配置合理的连接池大小
    • 使用CDN加速静态资源
  3. 数据库优化

    • 读写分离架构
    • 索引优化
    • 查询缓存

总结与最佳实践

通过系统性的高可用测试和故障演练,public-image-mirror项目能够确保为用户提供稳定可靠的镜像加速服务。关键实践包括:

  1. 定期演练:每月至少执行一次完整的故障演练
  2. 自动化测试:将高可用测试集成到CI/CD流水线中
  3. 监控告警:建立完善的监控体系和告警机制
  4. 容量规划:基于业务增长进行前瞻性容量规划
  5. 文档维护:保持故障处理手册和演练记录的更新

只有通过持续的测试和优化,才能构建真正高可用的镜像加速服务,为云原生应用的发展提供坚实保障。

提示:本文提供的测试脚本和配置需要根据实际环境进行调整,建议在测试环境中充分验证后再应用到生产环境。

【免费下载链接】public-image-mirror 很多镜像都在国外。比如 gcr 。国内下载很慢,需要加速。 【免费下载链接】public-image-mirror 项目地址: https://gitcode.com/GitHub_Trending/pu/public-image-mirror

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值