OpenManus 使用教程
1. 项目介绍
OpenManus 是一个开源框架,用于构建通用的人工智能(AI)代理。它由 MetaGPT 团队的成员开发,致力于提供一个开放的平台,让开发者能够轻松地实现自己的想法。OpenManus 支持 reinforcement learning (RL) 调整方法,如 GRPO,用于大型语言模型(LLM)代理。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统中已安装 Python 3.12。
方法一:使用 conda
-
创建新的 conda 环境:
conda create -n open_manus python=3.12 conda activate open_manus -
克隆仓库:
git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus -
安装依赖:
pip install -r requirements.txt
方法二:使用 uv(推荐)
-
安装 uv(一个快速的 Python 包安装器和解析器):
curl -LsSf https://astral.sh/uv/install.sh | sh -
克隆仓库:
git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus -
创建新的虚拟环境并激活:
uv venv --python 3.12 source .venv/bin/activate # Unix/macOS # 或者,在 Windows 上: # .venv\Scripts\activate -
安装依赖:
uv pip install -r requirements.txt
启动项目
运行以下命令启动 OpenManus:
python main.py
然后通过终端输入您的想法。
对于 MCP 工具版本,可以运行:
python run_mcp.py
对于不稳定的多人代理版本,也可以运行:
python run_flow.py
3. 应用案例和最佳实践
应用案例
- 构建聊天机器人
- 实现自动化任务代理
- 开发智能推荐系统
最佳实践
- 确保在提交 pull request 之前使用 pre-commit 工具检查更改。
- 在配置文件中正确设置 LLM API 的密钥和参数。
- 阅读项目文档和代码注释以了解更多使用细节。
4. 典型生态项目
OpenManus 的生态项目包括但不限于:
- OpenManus-RL:一个开源项目,专注于基于强化学习(RL)的调整方法,如 GRPO,用于 LLM 代理,由 UIUC 和 OpenManus 的研究人员合作开发。
- 其他与 OpenManus 相关的插件和工具,这些项目旨在扩展 OpenManus 的功能和用途。
通过以上教程,您应该能够快速上手 OpenManus 并开始构建您的人工智能代理项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考



