Open Deep Research 使用教程
1. 项目介绍
Open Deep Research 是一个开源的研究助手,能够自动化研究过程,并为任何主题生成可定制的报告。它允许用户通过特定的模型、提示、报告结构和搜索工具来自定义研究和写作过程。
2. 项目快速启动
在开始之前,请确保您已经设置了所需的API密钥,包括搜索工具和模型API密钥。
安装
使用pip安装Open Deep Research:
pip install open-deep-research
设置环境变量
设置环境变量,以便于Open Deep Research在运行时加载:
export TAVILY_API_KEY=<your_tavily_api_key>
export ANTHROPIC_API_KEY=<your_anthropic_api_key>
export OPENAI_API_KEY=<your_openai_api_key>
export PERPLEXITY_API_KEY=<your_perplexity_api_key>
export EXA_API_KEY=<your_exa_api_key>
export PUBMED_API_KEY=<your_pubmed_api_key>
export PUBMED_EMAIL=<your_email@example.com>
export LINKUP_API_KEY=<your_linkup_api_key>
export GOOGLE_API_KEY=<your_google_api_key>
export GOOGLE_CX=<your_google_custom_search_engine_id>
运行示例
以下是一个简单的例子,展示了如何使用Open Deep Research生成报告:
import uuid
thread = {
"configurable": {
"thread_id": str(uuid.uuid4()),
"search_api": "tavily",
"planner_provider": "anthropic",
"planner_model": "claude-3-7-sonnet-latest",
"writer_provider": "anthropic",
"writer_model": "claude-3-5-sonnet-latest",
"max_search_depth": 1
}
}
topic = "人工智能市场概述,重点关注Fireworks、Together.ai、Groq"
async for event in graph.astream({"topic": topic}, thread, stream_mode="updates"):
print(event)
请确保您已经在.env
文件中设置了所有必要的API密钥。
3. 应用案例和最佳实践
使用Open Deep Research时,您可以自定义报告的结构、搜索查询的数量、搜索深度以及使用的模型提供商和模型。
以下是一个调整配置的例子:
thread = {
"configurable": {
"thread_id": str(uuid.uuid4()),
"search_api": "exa",
"search_api_config": {
"num_results": 5,
"include_domains": ["nature.com", "sciencedirect.com"]
},
# 其他配置...
}
}
在研究过程中,您可以提供反馈以更新报告计划,并在满意后继续生成报告。
4. 典型生态项目
Open Deep Research 可以与多种AI模型和搜索工具集成,例如:
- Tavily API:用于一般网络搜索。
- Perplexity API:用于一般网络搜索。
- Exa API:强大的神经搜索,用于网络内容。
- ArXiv:物理学、数学、计算机科学等学术文章。
- PubMed:生物医学文献,包括MEDLINE、生命科学期刊和在线书籍。
- Linkup API:用于一般网络搜索。
- DuckDuckGo API:用于创建自定义搜索引擎。
通过这些工具和模型的集成,Open Deep Research 能够为各种研究和写作任务提供支持。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考