Realtek RTL8821CE 无线网卡驱动安装与使用教程

Realtek RTL8821CE 无线网卡驱动安装与使用教程

rtl8821ce rtl8821ce 项目地址: https://gitcode.com/gh_mirrors/rt/rtl8821ce

1. 项目介绍

项目概述

rtl8821ce 是一个开源的 Linux 无线网卡驱动项目,专门为 Realtek RTL8821CE 芯片设计。该项目主要用于 Arch Linux 和 Ubuntu 18.10 及以上版本,支持 Linux 内核版本大于 4.14。该项目由社区维护,并非 Realtek 官方支持。

项目目标

  • 提供适用于 Realtek RTL8821CE 芯片的 Linux 驱动程序。
  • 支持通过 DKMS(Dynamic Kernel Module Support)自动重新编译和安装内核模块。
  • 为 Arch Linux 和 Ubuntu 用户提供稳定的无线网络连接。

免责声明

该项目由非 Realtek 员工维护,主要用于个人使用。不保证对其他 Linux 发行版或内核版本的支持。使用风险自负。

2. 项目快速启动

安装依赖

在开始安装驱动之前,请确保系统已安装必要的编译工具和 DKMS。

Ubuntu & Debian
sudo apt install bc module-assistant build-essential dkms
sudo m-a prepare
Arch Linux
sudo pacman -Syu linux-headers dkms bc

安装驱动

从 AUR 安装(适用于 Arch Linux)
yay -S rtl8821ce-dkms-git
手动安装
  1. 克隆项目仓库:

    git clone https://github.com/tomaspinho/rtl8821ce.git
    cd rtl8821ce
    
  2. 运行安装脚本:

    sudo ./dkms-install.sh
    

卸载驱动

  1. 克隆项目仓库:

    git clone https://github.com/tomaspinho/rtl8821ce.git
    cd rtl8821ce
    
  2. 运行卸载脚本:

    sudo ./dkms-remove.sh
    

3. 应用案例和最佳实践

案例1:在 Ubuntu 20.04 上安装并使用

  1. 安装依赖:

    sudo apt install bc module-assistant build-essential dkms
    sudo m-a prepare
    
  2. 克隆项目并安装驱动:

    git clone https://github.com/tomaspinho/rtl8821ce.git
    cd rtl8821ce
    sudo ./dkms-install.sh
    
  3. 重启系统以应用更改。

案例2:在 Arch Linux 上通过 AUR 安装

  1. 安装依赖:

    sudo pacman -Syu linux-headers dkms bc
    
  2. 使用 AUR 助手(如 yay)安装驱动:

    yay -S rtl8821ce-dkms-git
    
  3. 重启系统以应用更改。

4. 典型生态项目

DKMS

DKMS(Dynamic Kernel Module Support)是一个用于自动重新编译和安装内核模块的系统。rtl8821ce 项目充分利用了 DKMS,确保在系统内核更新时自动重新编译和安装驱动。

Arch Linux AUR

Arch Linux 用户可以通过 AUR(Arch User Repository)轻松安装 rtl8821ce-dkms-git 包,从而简化安装过程。

Ubuntu MOTU Developers

Ubuntu 用户可以通过 Ubuntu MOTU Developers 维护的 rtl8821ce-dkms 包安装驱动。该包适用于 bionic、eoan 和 focal 版本。

通过以上步骤,您可以轻松地在 Linux 系统上安装和使用 Realtek RTL8821CE 无线网卡驱动。

rtl8821ce rtl8821ce 项目地址: https://gitcode.com/gh_mirrors/rt/rtl8821ce

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

首先,真实的这是我踩了4天的坑,新入手的 Thinkpad E470C i5-6125U 商务极速版 一块ssd256G(我不是打广告哈),我是想吐槽它,因为涉及的是网,所以直接说它的以太网(就是有线,再白话文点就是插网线的驱动网)是集成的网卡rlt8111/8618/8411,下面划重点啦哈!!!【敲黑板,duang duang duang】无线网是 Retaltek Semicondutor Co. Ltd Device c821【就是rtl8821ce】【Retaltek有官网说明】,没错就是这个坑比的网卡,2017年9月04一位外国友人在unix&linux;的官网上写道【Your wireless device is a Realtek RTL8821CE that is not yet supported in Linux. I would contact Lenovo about a replacement for your laptop that is made by Intel. Lenovo uses a whitelist in the BIOS and they will only boot if a supported wireless card is present in the internal slot】就是告诉你linux现在不支持这个型号的网卡,nmm这还搞什么搞?我气得想退货,反正我还没到7天无理由退货,我女票也在旁边说退了吧,这花钱买个不好使的,咋用?【没绣啊】但是我想作为一名理科男中的IT男怎么能被这点困难吓退?没有困难要制造困难再去解决,有困难就要埋头苦干的去解决困难,正在我沉浸在着解决这个困难的时候大家对我投来各种羡慕的幻想中,女票一巴掌打在我的头上!!!吃饭。。。想啥美事呢,这天还没黑呢。东北的女人果然惹不起,乖乖吃完饭继续来战这个问题。【都是一个一个字敲出来的大家就当娱乐一下,别紧张下面一定能解决这个问题】【这个很重要先在Bios里面把secrety root 设置成disable 】
### 使用PINN(物理信息神经网络)解决偏微分方程的实例 #### 背景介绍 物理信息神经网络(Physics-Informed Neural Networks, PINNs)是一种结合深度学习物理学知识的方法,能够高效求解复杂的偏微分方程(Partial Differential Equations, PDEs)。这种方法的核心在于将已知的物理规律作为约束条件嵌入到神经网络训练过程中,从而提高模型预测能力并减少对大量数据的需求。 以下是几个典型的PINN用于求解PDE的具体案例及其代码实现: --- #### 案例1:一维热传导方程 在一维空间中,热传导过程可以用如下形式表示: \[ u_t = \alpha u_{xx}, \quad x \in [a,b], t > 0, \] 其中 \(u(x,t)\) 表示温度分布,\(t\) 是时间变量,\(x\) 是位置坐标,而 \(\alpha\) 则代表材料的导热系数。边界条件可以设定为固定端点处的温度值或者绝热状态下的梯度零假设。 ##### 实现步骤 下面展示了一段基于PyTorch框架的一维热传导方程解决方案[^2]: ```python import torch import numpy as np # 定义神经网络结构 class Net(torch.nn.Module): def __init__(self, layers): super(Net, self).__init__() self.linears = torch.nn.ModuleList([torch.nn.Linear(layers[i], layers[i+1]) for i in range(len(layers)-1)]) def forward(self, x): a = x for i, l in enumerate(self.linears[:-1]): a = torch.tanh(l(a)) a = self.linears[-1](a) return a # 初始化参数 layers = [2, 20, 20, 1] # 输入维度 (x,t),隐藏层节点数,输出维度(u) model = Net(layers) def compute_loss(model, x_data, t_data, alpha=0.1): """定义损失函数""" xt = torch.cat((x_data.unsqueeze(-1), t_data.unsqueeze(-1)), dim=-1).requires_grad_(True) u_pred = model(xt) grad_u = torch.autograd.grad( outputs=u_pred.sum(), inputs=xt, create_graph=True)[0] u_x = grad_u[:, 0].view(-1, 1) u_t = grad_u[:, 1].view(-1, 1) hessian_xx = torch.autograd.grad(outputs=u_x, inputs=xt, retain_graph=True, create_graph=True)[0][:, 0].view(-1, 1) pde_residual = u_t - alpha * hessian_xx mse_pde = torch.mean(pde_residual ** 2) return mse_pde # 训练循环省略... ``` 上述代码片段展示了如何构建一个简单的全连接前馈神经网络,并通过自动微分技术计算目标函数相对于输入的空间二阶导数以及时间一阶导数,进而形成残差项以优化整个系统性能。 --- #### 案例2:Burgers' 方程 另一个经典例子是非线性的 Burgers’ 方程,在流体力学领域具有重要意义: \[ u_t + uu_x = \nu u_{xx}, \] 这里引入了粘滞效应因子 \(\nu>0\) 来描述扩散现象的影响程度。该类问题同样可以通过调整相应超参设置来适配不同场景需求[^1]。 --- #### 已验证的有效性分析 研究表明,相比于传统数值方法如有限元法或谱方法等,采用PINN不仅可以获得更高的精度而且还能显著降低运算成本特别是当面对高维情形时优势更加明显。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华情游

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值