开源项目安装与配置指南:Ask Astro

开源项目安装与配置指南:Ask Astro

ask-astro An end-to-end LLM reference implementation providing a Q&A interface for Airflow and Astronomer ask-astro 项目地址: https://gitcode.com/gh_mirrors/as/ask-astro

1. 项目基础介绍

Ask Astro 是一个开源项目,由 Astronomer 开发,旨在提供一个问答系统的参考实现,用于回答有关 Apache Airflow 和 Astronomer 的问题。该项目是一个端到端的 LLM(大型语言模型)应用架构实例,它包括数据摄取、提示编排和反馈循环等模块。

主要编程语言:Python

2. 关键技术和框架

  • Apache Airflow:用于定义、调度和监控数据管道的分布式平台。
  • LangChain:用于构建和优化 LLM 应用的库。
  • Weaviate:用于存储和检索嵌入向量的向量数据库。
  • OpenAI:提供嵌入模型和 LLM 调用服务。
  • Cohere Reranker:用于重新排序文档的相关性。

3. 安装和配置准备工作

在开始安装之前,请确保您的系统中已经安装了以下软件:

  • Python 3.x
  • pip(Python 包管理器)
  • Git(用于克隆和更新项目代码)

安装步骤

克隆项目代码

首先,从您的命令行界面运行以下命令以克隆项目代码:

git clone https://github.com/astronomer/ask-astro.git
cd ask-astro

安装依赖

在项目目录中,使用 pip 安装项目依赖:

pip install -r requirements.txt

配置环境变量

在项目根目录下创建一个 .env 文件,并添加以下环境变量:

WEAVIATE_URL=你的Weaviate服务器地址
OPENAI_API_KEY=你的OpenAI API密钥
COHERE_API_KEY=你的Cohere API密钥

运行项目

启动 UI

运行以下命令启动用户界面:

python3 scripts/local_dev.py run-ui
启动 API 服务器

运行以下命令启动 API 服务器:

python3 scripts/local_dev.py run-api-server
启动 Airflow

运行以下命令启动 Airflow:

python3 scripts/local_dev.py run-airflow

完成以上步骤后,你应该能够本地访问 Ask Astro 的 UI 和 API,并开始探索其功能。

请确保在运行任何服务前正确配置了所有必要的环境变量和依赖项。如果在安装或配置过程中遇到任何问题,可以查阅项目的 README 文件或相关文档以获得更多信息。

ask-astro An end-to-end LLM reference implementation providing a Q&A interface for Airflow and Astronomer ask-astro 项目地址: https://gitcode.com/gh_mirrors/as/ask-astro

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

班妲盼Joyce

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值