开源项目安装与配置指南:Ask Astro
1. 项目基础介绍
Ask Astro 是一个开源项目,由 Astronomer 开发,旨在提供一个问答系统的参考实现,用于回答有关 Apache Airflow 和 Astronomer 的问题。该项目是一个端到端的 LLM(大型语言模型)应用架构实例,它包括数据摄取、提示编排和反馈循环等模块。
主要编程语言:Python
2. 关键技术和框架
- Apache Airflow:用于定义、调度和监控数据管道的分布式平台。
- LangChain:用于构建和优化 LLM 应用的库。
- Weaviate:用于存储和检索嵌入向量的向量数据库。
- OpenAI:提供嵌入模型和 LLM 调用服务。
- Cohere Reranker:用于重新排序文档的相关性。
3. 安装和配置准备工作
在开始安装之前,请确保您的系统中已经安装了以下软件:
- Python 3.x
- pip(Python 包管理器)
- Git(用于克隆和更新项目代码)
安装步骤
克隆项目代码
首先,从您的命令行界面运行以下命令以克隆项目代码:
git clone https://github.com/astronomer/ask-astro.git
cd ask-astro
安装依赖
在项目目录中,使用 pip 安装项目依赖:
pip install -r requirements.txt
配置环境变量
在项目根目录下创建一个 .env
文件,并添加以下环境变量:
WEAVIATE_URL=你的Weaviate服务器地址
OPENAI_API_KEY=你的OpenAI API密钥
COHERE_API_KEY=你的Cohere API密钥
运行项目
启动 UI
运行以下命令启动用户界面:
python3 scripts/local_dev.py run-ui
启动 API 服务器
运行以下命令启动 API 服务器:
python3 scripts/local_dev.py run-api-server
启动 Airflow
运行以下命令启动 Airflow:
python3 scripts/local_dev.py run-airflow
完成以上步骤后,你应该能够本地访问 Ask Astro 的 UI 和 API,并开始探索其功能。
请确保在运行任何服务前正确配置了所有必要的环境变量和依赖项。如果在安装或配置过程中遇到任何问题,可以查阅项目的 README 文件或相关文档以获得更多信息。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考