CORDS 项目使用教程

CORDS 项目使用教程

cords Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection. cords 项目地址: https://gitcode.com/gh_mirrors/co/cords

1. 项目的目录结构及介绍

CORDS 项目的目录结构如下:

cords/
├── benchmarks/
├── configs/
├── cords/
├── docs/
├── examples/
├── requirements/
├── tests/
├── tutorial/
├── .gitignore
├── CITATION.cff
├── LICENSE.txt
├── README.md
├── gradio_hpo.py
├── gradio_sl.py
├── setup.py
├── train_hpo.py
├── train_sl.py
├── train_ssl.py
├── transformers_train_sl.py

目录结构介绍

  • benchmarks/: 包含项目的基准测试代码。
  • configs/: 包含项目的配置文件。
  • cords/: 项目的主要代码库。
  • docs/: 包含项目的文档文件。
  • examples/: 包含项目的示例代码。
  • requirements/: 包含项目的依赖文件。
  • tests/: 包含项目的测试代码。
  • tutorial/: 包含项目的教程代码。
  • .gitignore: Git 忽略文件。
  • CITATION.cff: 项目引用文件。
  • LICENSE.txt: 项目许可证文件。
  • README.md: 项目介绍文件。
  • gradio_hpo.py: 用于超参数优化的 Gradio 脚本。
  • gradio_sl.py: 用于监督学习的 Gradio 脚本。
  • setup.py: 项目的安装脚本。
  • train_hpo.py: 用于超参数训练的脚本。
  • train_sl.py: 用于监督学习的训练脚本。
  • train_ssl.py: 用于半监督学习的训练脚本。
  • transformers_train_sl.py: 用于使用 Transformers 库进行监督学习的训练脚本。

2. 项目的启动文件介绍

train_sl.py

train_sl.py 是用于监督学习(Supervised Learning)的训练脚本。它包含了训练模型的主要逻辑,包括数据加载、模型训练、损失计算等。

train_ssl.py

train_ssl.py 是用于半监督学习(Semi-Supervised Learning)的训练脚本。它与 train_sl.py 类似,但针对半监督学习的场景进行了优化。

train_hpo.py

train_hpo.py 是用于超参数优化(Hyper-Parameter Optimization)的训练脚本。它通过不同的超参数组合来训练模型,并选择最优的超参数配置。

3. 项目的配置文件介绍

configs/ 目录

configs/ 目录包含了项目的配置文件,这些配置文件用于定义训练过程中的各种参数,如数据集路径、模型参数、训练轮数等。

示例配置文件
# configs/SL/config_glister_cifar10.py

# 数据集路径
dataset_path = '/path/to/dataset'

# 模型参数
model_params = {
    'num_classes': 10,
    'learning_rate': 0.001,
    'batch_size': 32
}

# 训练参数
train_params = {
    'num_epochs': 100,
    'device': 'cuda'
}

使用配置文件

在训练脚本中,可以通过加载配置文件来设置训练参数:

from cords.utils.config_utils import load_config_data

config_file = 'configs/SL/config_glister_cifar10.py'
cfg = load_config_data(config_file)

# 使用配置文件中的参数
model_params = cfg['model_params']
train_params = cfg['train_params']

通过这种方式,可以方便地管理和修改训练过程中的各种参数。

cords Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection. cords 项目地址: https://gitcode.com/gh_mirrors/co/cords

以下是一个使用混合蛙跳算法(Hybrid Genetic Algorithm and Particle Swarm Optimization,HGPSO)解决TSP问题的Python程序: ```python import numpy as np import random import math # 定义TSP问题中的城市坐标 city_cords = np.array([[60, 200], [180, 200], [80, 180], [140, 180], [20, 160], [100, 160], [200, 160], [140, 140], [40, 120], [100, 120], [180, 100], [60, 80], [120, 80], [180, 60], [20, 40], [100, 40], [200, 40], [20, 20], [60, 20], [160, 20]]) # 定义使用HGPSO算法解决TSP问题的类 class HGPSO_TSP: def __init__(self, n_pop, n_city, n_iter, w=0.7, c1=1.5, c2=1.5, p_crossover=0.9, p_mutation=0.1): self.n_pop = n_pop # 种群大小 self.n_city = n_city # 城市数量 self.n_iter = n_iter # 迭代次数 self.w = w # 惯性权重 self.c1 = c1 # 个体学习因子 self.c2 = c2 # 群体学习因子 self.p_crossover = p_crossover # 交叉概率 self.p_mutation = p_mutation # 变异概率 self.population = np.zeros((self.n_pop, self.n_city), dtype=int) # 种群中每个个体的基因型 self.fitness = np.zeros(self.n_pop) # 种群中每个个体的适应度值 self.global_best = np.zeros(self.n_city, dtype=int) # 全局最优解的基因型 self.global_best_fitness = np.inf # 全局最优解的适应度值 # 计算两个城市之间的欧氏距离 def distance(self, city1, city2): return math.sqrt((city1[0]-city2[0])**2 + (city1[1]-city2[1])**2) # 计算一个个体的适应度值 def evaluate(self, individual): distance_sum = 0 for i in range(self.n_city-1): distance_sum += self.distance(city_cords[individual[i]], city_cords[individual[i+1]]) distance_sum += self.distance(city_cords[individual[-1]], city_cords[individual[0]]) return distance_sum # 初始化种群 def initialize_population(self): for i in range(self.n_pop): self.population[i] = np.random.permutation(self.n_city) self.fitness[i] = self.evaluate(self.population[i]) # 更新全局最优解 def update_global_best(self): for i in range(self.n_pop): if self.fitness[i] < self.global_best_fitness: self.global_best_fitness = self.fitness[i] self.global_best = self.population[i] # 选择操作 def selection(self): fitness_sum = np.sum(1/self.fitness) probs = (1/self.fitness) / fitness_sum selected_indices = np.random.choice(self.n_pop, self.n_pop, p=probs) selected_population = self.population[selected_indices] return selected_population # 交叉操作 def crossover(self, parent1, parent2): child = np.zeros(self.n_city, dtype=int) start = random.randint(0, self.n_city-1) end = random.randint(start, self.n_city-1) child[start:end] = parent1[start:end] for i in range(self.n_city): if parent2[i] not in child: for j in range(self.n_city): if child[j] == 0: child[j] = parent2[i] break return child # 变异操作 def mutation(self, individual): index1 = random.randint(0, self.n_city-1) index2 = random.randint(0, self.n_city-1) individual[index1], individual[index2] = individual[index2], individual[index1] return individual # 更新种群 def update_population(self): selected_population = self.selection() new_population = np.zeros((self.n_pop, self.n_city), dtype=int) for i in range(self.n_pop): parent1 = selected_population[i] if random.random() < self.p_crossover: parent2 = selected_population[random.randint(0, self.n_pop-1)] child = self.crossover(parent1, parent2) if random.random() < self.p_mutation: child = self.mutation(child) new_population[i] = child else: new_population[i] = parent1 self.population = new_population self.fitness = np.zeros(self.n_pop) for i in range(self.n_pop): self.fitness[i] = self.evaluate(self.population[i]) # 更新速度 def update_velocity(self, velocity, individual, local_best): r1 = np.random.rand(self.n_city) r2 = np.random.rand(self.n_city) personal_best = individual global_best = self.global_best for i in range(self.n_city): velocity[i] = self.w * velocity[i] + self.c1 * r1[i] * (personal_best[i] - individual[i]) + self.c2 * r2[i] * (global_best[i] - individual[i]) if velocity[i] > self.n_city/2: velocity[i] = self.n_city/2 elif velocity[i] < -self.n_city/2: velocity[i] = -self.n_city/2 return velocity # 更新位置 def update_position(self, individual, velocity): position = np.zeros(self.n_city, dtype=int) temp = individual + velocity for i in range(self.n_city): if temp[i] > self.n_city-1: temp[i] = self.n_city-1 elif temp[i] < 0: temp[i] = 0 for i in range(self.n_city): if temp[i] not in position: position[i] = temp[i] else: for j in range(self.n_city): if position[j] == 0: position[j] = temp[i] break return position # 更新局部最优解 def update_local_best(self, position, fitness): local_best = np.zeros(self.n_city, dtype=int) local_best_fitness = np.inf for i in range(self.n_pop): if fitness[i] < local_best_fitness and np.array_equal(position, self.population[i]): local_best_fitness = fitness[i] local_best = self.population[i] return local_best # HGPSO算法 def run(self): self.initialize_population() self.update_global_best() velocity = np.zeros((self.n_pop, self.n_city), dtype=int) for i in range(self.n_iter): for j in range(self.n_pop): velocity[j] = self.update_velocity(velocity[j], self.population[j], self.update_local_best(self.population[j], self.fitness)) self.population[j] = self.update_position(self.population[j], velocity[j]) self.fitness[j] = self.evaluate(self.population[j]) self.update_global_best() return self.global_best, self.global_best_fitness # 测试 n_pop = 50 # 种群大小 n_city = 20 # 城市数量 n_iter = 100 # 迭代次数 hgpso_tsp = HGPSO_TSP(n_pop, n_city, n_iter) best_path, best_dist = hgpso_tsp.run() print("最短路径:", best_path) print("最短距离:", best_dist) ``` 在该程序中,我们首先定义了TSP问题中的城市坐标,然后定义了一个使用HGPSO算法解决TSP问题的类`HGPSO_TSP`。在该类中,我们先定义了一个`distance`函数,用于计算两个城市之间的欧氏距离。然后,我们定义了一系列方法来实现HGPSO算法中的各个操作,包括初始化种群、计算适应度值、选择操作、交叉操作、变异操作、更新种群、更新速度、更新位置、更新局部最优解和运行算法。最后,我们设置了一些参数,调用`HGPSO_TSP`类并运行算法,输出最短路径和最短距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

巫崧坤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值