Street Fighter AI 项目常见问题解决方案

Street Fighter AI 项目常见问题解决方案

street-fighter-ai This is an AI agent for Street Fighter II Champion Edition. street-fighter-ai 项目地址: https://gitcode.com/gh_mirrors/st/street-fighter-ai

1. 项目基础介绍和主要编程语言

该项目是一个基于深度强化学习训练的AI代理,目的是在游戏《Street Fighter II: Special Champion Edition》中击败最终boss。AI代理通过游戏屏幕的RGB像素值来进行决策。在提供的保存状态下,该代理在最终关卡的第一轮拥有100%的胜率(存在过拟合情况,详见测试运行部分)。

主要编程语言

  • 项目主要基于Python编程语言,并且主要使用了OpenAI Gym Retro和Stable-Baselines3这样的标准库。

2. 新手使用该项目需要特别注意的3个问题及解决步骤

问题一:环境搭建

详细步骤:

  1. 创建名为StreetFighterAI的conda环境,并指定Python版本为3.8.10:
    conda create -n StreetFighterAI python=3.8.10
    
  2. 激活创建的环境:
    conda activate StreetFighterAI
    
  3. 安装项目所需的Python库:
    cd [项目的父目录]/street-fighter-ai/main
    pip install -r requirements.txt
    
  4. 运行脚本以定位gym-retro游戏文件夹:
    cd python/utils
    python print_game_lib_folder.py
    
    将在控制台输出的文件夹路径复制到文件资源管理器,并导航到相应的路径。该文件夹包含"Street Fighter II: Special Champion Edition"的游戏数据文件,包括游戏ROM文件和数据配置文件。

问题二:如何运行测试

详细步骤:

  1. 确保你已经按照上述环境搭建的步骤配置好了Python环境和安装了必要的库。
  2. 运行main文件夹中的run.py文件来开始测试:
    python run.py
    
    这将会运行AI并进行游戏,观察其在不同训练阶段所学策略的表现。

问题三:如何观察训练过程

详细步骤:

  1. 运行run.py开始AI训练。
  2. 在控制台输出的路径中,找到main/logs文件夹。
  3. 使用Tensorboard查看训练过程中的终端/控制台输出和数据曲线,可以通过以下命令启动Tensorboard:
    tensorboard --logdir=main/logs
    
    这样你就可以看到AI在训练过程中的性能变化和状态。

确保在开始以上操作前,你已经根据项目的运行指南正确设置了Python环境,并安装了所有必需的依赖项。这样可以避免在使用该项目时遇到不必要的问题。

street-fighter-ai This is an AI agent for Street Fighter II Champion Edition. street-fighter-ai 项目地址: https://gitcode.com/gh_mirrors/st/street-fighter-ai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈昊和

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值