5分钟搭建本地智能问答系统:Langchain-Chatchat网页内容交互方案

5分钟搭建本地智能问答系统:Langchain-Chatchat网页内容交互方案

【免费下载链接】Langchain-Chatchat Langchain-Chatchat(原Langchain-ChatGLM)基于 Langchain 与 ChatGLM 等语言模型的本地知识库问答 | Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain 【免费下载链接】Langchain-Chatchat 项目地址: https://gitcode.com/GitHub_Trending/la/Langchain-Chatchat

你是否还在为企业文档查询效率低而烦恼?是否希望拥有一个能理解网页内容的智能助手?本文将介绍如何使用Langchain-Chatchat(原Langchain-ChatGLM)快速构建基于本地知识库的网页内容智能问答系统,无需复杂编程,让普通用户也能轻松部署。读完本文,你将掌握从环境配置到知识库构建的完整流程,并了解系统背后的技术原理。

技术原理概览

Langchain-Chatchat是一个基于Langchain与大语言模型(如ChatGLM、Qwen2等)的本地知识库问答应用。其核心原理是将网页内容转化为向量存储,当用户提问时,系统会匹配最相关的内容片段作为上下文,再交由语言模型生成回答。

技术原理流程图

系统实现流程主要包括:

  1. 加载网页或文档内容
  2. 文本分割与向量化处理
  3. 向量存储(支持多种向量数据库)
  4. 提问向量与文本向量匹配
  5. 结合上下文生成回答

文档处理流程图

核心功能实现代码位于libs/chatchat-server/chatchat/knowledge_base/目录,包含了从文本加载到向量存储的完整逻辑。

环境准备与安装

软硬件要求

  • 软件环境:Python 3.8-3.11,支持Windows、macOS、Linux系统
  • 硬件要求:可根据模型大小灵活调整,支持CPU、GPU、NPU等多种计算设备

快速安装步骤

从0.3.0版本开始,Langchain-Chatchat提供Python库形式安装,执行以下命令即可:

pip install langchain-chatchat -U

如需使用Xinference模型部署框架,建议使用以下命令安装额外依赖:

pip install "langchain-chatchat[xinference]" -U

详细安装文档可参考官方安装指南,包含Docker部署等多种方式。

模型配置与启动

模型部署框架选择

项目支持多种模型部署框架,可根据需求选择:

模型部署框架支持特性适用场景
Xinference支持多模型类型,兼容OpenAI API本地多模型部署
Ollama轻量化部署,支持GGUF格式模型个人用户快速体验
LocalAI全面兼容OpenAI API,支持多种加速引擎企业级部署
FastChat专注LLM部署,支持vLLM加速高性能推理需求

以Xinference为例,启动模型服务后,通过以下命令配置模型平台:

chatchat-config model --set_model_platforms "[{
    \"platform_name\": \"xinference\",
    \"platform_type\": \"xinference\",
    \"api_base_url\": \"http://127.0.0.1:9997/v1\",
    \"api_key\": \"EMPT\",
    \"llm_models\": [\"qwen2-instruct\"],
    \"embed_models\": [\"bge-large-zh-v1.5\"]
}]"

更多配置选项可参考模型配置文档

知识库构建与网页内容导入

初始化知识库

完成模型配置后,需初始化知识库。执行以下命令:

chatchat-kb -r

成功初始化后会显示类似以下输出:

----------------------------------------------------------------------------------------------------
知识库名称      :samples
知识库类型      :faiss
向量模型:      :bge-large-zh-v1.5
知识库路径      :/path/to/chatchat/data/knowledge_base/samples
文件总数量      :47
入库文件数      :42
知识条目数      :740
用时            :0:02:29.701002
----------------------------------------------------------------------------------------------------

知识库默认存储路径在DATA_PATH配置指向的目录下,可通过配置工具修改存储位置。

导入网页内容

系统支持多种方式导入网页内容:

  1. 通过WebUI上传HTML文件
  2. 使用API接口批量导入
  3. 编写爬虫脚本自动抓取(需自行实现)

网页内容处理逻辑位于markdown_docs/document_loaders/目录,包含了针对不同格式文件的加载器实现。

WebUI使用与问答示例

启动WebUI

执行以下命令启动WebUI:

chatchat -a

成功启动后,访问本地地址即可看到Web界面:

WebUI界面

界面主要包含对话窗口、知识库管理、模型配置等功能模块,详细使用说明可参考WebUI操作指南

问答交互示例

以技术文档查询为例,上传包含API文档的网页内容后,可进行如下交互:

用户提问:如何修改默认的LLM模型?

系统回答:可通过chatchat-config命令修改模型配置,例如:

chatchat-config model --default_llm_model qwen2-instruct

此功能的实现代码位于frontend/src/services/chat.ts,处理用户提问并调用后端API获取回答。

常见问题与优化建议

知识库构建问题

问题:Windows环境下重建知识库时卡住 解决:通常是python-magic-bin版本问题,执行以下命令:

pip uninstall python-magic-bin
pip install 'python-magic-bin==0.4.14'

更多常见问题可参考知识库常见问题文档。

性能优化建议

  1. 模型选择:根据硬件条件选择合适大小的模型,如Qwen2-0.5B适合CPU运行
  2. 向量数据库:大规模知识库建议使用Milvus或FAISS等高性能向量数据库
  3. 文本分割:调整分割参数优化上下文质量,相关代码在chatchat/text_splitter/目录

总结与展望

Langchain-Chatchat提供了一个灵活高效的本地知识库问答解决方案,通过本文介绍的方法,你可以快速构建网页内容智能问答系统。项目目前已支持Agent功能,未来将进一步增强多模态处理能力和用户交互体验。

鼓励用户参与项目贡献,无论是代码开发还是文档完善,都可以参考贡献指南。如有问题,可加入项目交流群或参考官方文档获取帮助。

随着开源模型的不断发展,本地智能问答系统将在企业知识库、个人学习等场景发挥越来越重要的作用,Langchain-Chatchat也将持续优化,为用户提供更好的体验。

【免费下载链接】Langchain-Chatchat Langchain-Chatchat(原Langchain-ChatGLM)基于 Langchain 与 ChatGLM 等语言模型的本地知识库问答 | Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain 【免费下载链接】Langchain-Chatchat 项目地址: https://gitcode.com/GitHub_Trending/la/Langchain-Chatchat

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值