LabelImg批量重命名功能:管理大规模图像数据集
在处理大规模图像数据集时,高效的文件管理是提升标注效率的关键环节。本文将详细介绍如何利用LabelImg结合Python脚本实现图像文件的批量重命名,解决数据集整理中的常见痛点,让你的标注工作流程更加顺畅。
为什么需要批量重命名功能
当你处理包含数百甚至数千张图像的数据集时,可能会遇到以下问题:
- 原始文件名杂乱无章,包含随机字符或无意义编号
- 不同批次采集的图像命名规则不一致
- 需要按类别、日期或其他属性对图像进行分组管理
- 标注文件(XML/TXT)与图像文件的命名对应关系混乱
这些问题会严重影响标注效率,甚至导致标注文件与图像文件对应错误。而LabelImg本身虽然没有直接提供批量重命名功能,但我们可以通过结合其文件管理特性和简单的Python脚本来实现这一需求。
LabelImg的文件管理基础
LabelImg提供了基本的文件浏览和管理功能,通过这些功能我们可以方便地查看和导航图像文件:
主要文件管理功能包括:
- 文件列表窗口:在右侧面板中显示当前目录下的所有图像文件
- 图像导航:使用快捷键
A(上一张)和D(下一张)快速切换图像 - 批量标注:打开整个目录后可连续进行标注工作
这些功能为我们的批量重命名操作提供了基础支持。相关实现代码可以在labelImg.py中找到,特别是以下关键部分:
223: open_dir = action(get_str('openDir'), self.open_dir_dialog,
224: 'Ctrl+u', 'open', get_str('openDir'))
233: open_next_image = action(get_str('nextImg'), self.open_next_image,
234: 'd', 'next', get_str('nextImgDetail'))
236: open_prev_image = action(get_str('prevImg'), self.open_prev_image,
237: 'a', 'prev', get_str('prevImgDetail'))
实现批量重命名的两种方法
方法一:使用LabelImg的文件列表结合外部脚本
这种方法适用于需要根据标注内容或特定规则进行重命名的场景。
-
导出文件列表:首先在LabelImg中打开图像所在目录,确保所有需要重命名的图像都已加载到文件列表中
-
使用Python脚本批量重命名:LabelImg项目中提供了一个实用工具脚本tools/label_to_csv.py,我们可以基于此修改实现批量重命名功能。以下是一个简单的实现示例:
import os
import csv
from pathlib import Path
def batch_rename_images(image_dir, output_dir, prefix="img_", start_index=1):
"""
批量重命名图像文件并保持标注文件同步
参数:
- image_dir: 原始图像目录
- output_dir: 重命名后的图像输出目录
- prefix: 新文件名前缀
- start_index: 起始编号
"""
# 创建输出目录(如果不存在)
Path(output_dir).mkdir(parents=True, exist_ok=True)
# 支持的图像格式
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.gif']
# 获取所有图像文件
image_files = []
for file in os.listdir(image_dir):
if any(file.lower().endswith(ext) for ext in image_extensions):
image_files.append(file)
# 按文件名排序(确保顺序一致)
image_files.sort()
# 重命名计数器
count = start_index
# 记录重命名前后的对应关系
rename_mapping = []
for old_filename in image_files:
# 获取文件扩展名
ext = os.path.splitext(old_filename)[1]
# 构建新文件名
new_filename = f"{prefix}{count:06d}{ext}"
# 构建完整路径
old_path = os.path.join(image_dir, old_filename)
new_path = os.path.join(output_dir, new_filename)
# 复制并重命名文件(使用复制而非移动,保留原始文件)
with open(old_path, 'rb') as fsrc, open(new_path, 'wb') as fdst:
fdst.write(fsrc.read())
# 处理对应的标注文件
for ann_ext in ['.xml', '.txt', '.json']:
old_ann_path = os.path.splitext(old_path)[0] + ann_ext
if os.path.exists(old_ann_path):
new_ann_path = os.path.splitext(new_path)[0] + ann_ext
with open(old_ann_path, 'rb') as fsrc, open(new_ann_path, 'wb') as fdst:
fdst.write(fsrc.read())
# 记录映射关系
rename_mapping.append({
'old_filename': old_filename,
'new_filename': new_filename
})
count += 1
# 保存重命名映射表
with open(os.path.join(output_dir, 'rename_mapping.csv'), 'w', newline='') as csvfile:
fieldnames = ['old_filename', 'new_filename']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for row in rename_mapping:
writer.writerow(row)
print(f"成功重命名 {count - start_index} 个文件,映射表已保存至 rename_mapping.csv")
# 使用示例
if __name__ == "__main__":
# 设置源目录和输出目录
image_directory = "/path/to/your/images"
output_directory = "/path/to/renamed/images"
# 调用重命名函数
batch_rename_images(
image_dir=image_directory,
output_dir=output_directory,
prefix="dataset_",
start_index=1
)
方法二:基于标注内容的智能重命名
如果你需要根据图像中的标注类别进行重命名,可以结合LabelImg的标注文件解析功能。LabelImg支持多种标注格式,包括Pascal VOC XML和YOLO格式,我们可以解析这些文件并根据标注信息进行重命名。
以下是一个基于标注内容的重命名脚本示例,它会根据图像中出现的主要类别对文件进行重命名:
import os
import xml.etree.ElementTree as ET
from collections import Counter
def get_main_category(xml_path):
"""从Pascal VOC XML标注文件中获取主要类别"""
try:
tree = ET.parse(xml_path)
root = tree.getroot()
# 收集所有目标类别
categories = []
for obj in root.findall('object'):
category = obj.find('name').text
categories.append(category)
if not categories:
return "unlabeled"
# 找出出现次数最多的类别
most_common = Counter(categories).most_common(1)
return most_common[0][0]
except Exception as e:
print(f"解析标注文件时出错: {xml_path}, 错误: {e}")
return "error"
def rename_by_category(image_dir):
"""根据标注类别重命名图像文件"""
# 支持的图像格式
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp']
# 标注文件扩展名
ann_ext = '.xml' # Pascal VOC格式
# 获取所有图像文件
image_files = []
for file in os.listdir(image_dir):
ext = os.path.splitext(file)[1].lower()
if ext in image_extensions:
image_files.append(file)
# 按文件名排序
image_files.sort()
# 类别计数器
category_counter = {}
for image_file in image_files:
# 获取图像文件名(不含扩展名)
base_name = os.path.splitext(image_file)[0]
ext = os.path.splitext(image_file)[1]
# 对应的标注文件路径
ann_path = os.path.join(image_dir, base_name + ann_ext)
# 如果标注文件存在,则获取主要类别
if os.path.exists(ann_path):
main_category = get_main_category(ann_path)
else:
main_category = "unlabeled"
# 更新类别计数器
if main_category not in category_counter:
category_counter[main_category] = 1
else:
category_counter[main_category] += 1
# 构建新文件名
new_base_name = f"{main_category}_{category_counter[main_category]:04d}"
new_image_file = new_base_name + ext
new_ann_file = new_base_name + ann_ext
# 重命名图像文件
old_image_path = os.path.join(image_dir, image_file)
new_image_path = os.path.join(image_dir, new_image_file)
os.rename(old_image_path, new_image_path)
# 重命名标注文件(如果存在)
if os.path.exists(ann_path):
old_ann_path = ann_path
new_ann_path = os.path.join(image_dir, new_ann_file)
os.rename(old_ann_path, new_ann_path)
print(f"重命名: {image_file} -> {new_image_file} (类别: {main_category})")
print("重命名完成!")
print("类别统计:")
for category, count in category_counter.items():
print(f" {category}: {count} 个文件")
# 使用示例
if __name__ == "__main__":
# 设置包含图像和标注文件的目录
dataset_dir = "/path/to/your/dataset"
# 调用重命名函数
rename_by_category(dataset_dir)
重命名后的标注工作流
完成批量重命名后,你可以按照以下步骤在LabelImg中继续进行标注工作:
-
打开重命名后的目录:启动LabelImg,使用
Ctrl+U快捷键打开重命名后的图像目录 -
验证文件列表:在右侧文件列表中确认所有图像都已正确加载
-
开始标注:使用
W键创建边界框,A和D键切换图像,Ctrl+S保存标注 -
使用自动保存:在"视图"菜单中勾选"自动保存模式",启用自动保存功能
LabelImg的自动保存功能可以确保你的标注工作不会丢失,相关设置在labelImg.py中的实现如下:
413: self.auto_saving = QAction(get_str('autoSaveMode'), self)
414: self.auto_saving.setCheckable(True)
415: self.auto_saving.setChecked(settings.get(SETTING_AUTO_SAVE, False))
最佳实践与注意事项
-
备份原始数据:在执行批量重命名操作前,始终备份原始数据集,以防意外情况
-
使用复制而非移动:在测试阶段,建议使用复制操作代替移动,确保原始文件安全
-
保存重命名映射表:如上述脚本所示,保存重命名前后的映射关系,便于后续追溯
-
统一文件命名规范:
- 使用有意义的前缀(如类别名称)
- 使用固定位数的序号(如0001, 0002)确保排序正确
- 保持文件名简洁明了
-
与标注格式匹配:确保重命名后的图像文件与标注文件(XML/TXT)保持同名,否则LabelImg将无法自动关联它们
-
使用版本控制:对于重要的数据集,考虑使用Git等版本控制工具跟踪文件变更
总结
通过本文介绍的方法,你可以轻松实现LabelImg数据集的批量重命名,解决大规模图像数据管理的痛点。无论是简单的序号重命名还是基于标注内容的智能分类命名,都能有效提升你的标注工作效率。
记住,良好的文件管理习惯是成功完成大规模标注项目的关键。结合LabelImg的强大标注功能和本文提供的批量重命名技巧,你将能够更高效地处理各种图像数据集。
如果你在使用过程中遇到任何问题,可以查阅项目的README.rst文档或查看源代码获取更多帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考




