Linux Dash高级数据过滤:精准定位系统问题

Linux Dash高级数据过滤:精准定位系统问题

【免费下载链接】linux-dash A beautiful web dashboard for Linux 【免费下载链接】linux-dash 项目地址: https://gitcode.com/gh_mirrors/li/linux-dash

痛点直击:当服务器报警淹没在海量数据中

你是否曾在凌晨3点被服务器报警惊醒,却在Linux Dash的100+进程数据中迷失方向?是否在排查网络攻击时,因无法快速筛选异常IP连接而错失最佳响应时机?Linux Dash作为轻量级系统监控工具(Lightweight System Monitoring Tool,轻量系统监控工具),默认展示的全量数据往往成为故障定位的阻碍而非助力。本文将系统讲解如何通过自定义数据过滤规则构建实时分析管道创建可视化监控看板,将Linux Dash从数据展示工具升级为系统问题诊断专家。

读完你将掌握

  • 3种核心数据过滤技术(参数筛选/正则匹配/时间窗口)的实战配置
  • 5个关键监控场景(CPU异常/内存泄漏/网络攻击/磁盘IO瓶颈/用户登录异常)的过滤模板
  • 基于WebSocket(Web套接字)的实时数据处理管道搭建方法
  • 自定义仪表盘(Dashboard)的Mermaid流程图可视化实现
  • 从0到1的Linux Dash监控系统优化全流程(含代码示例)

一、数据采集机制:理解Linux Dash的数据流架构

1.1 模块化数据采集原理

Linux Dash采用插件化架构设计,通过服务器端脚本(linux_json_api.sh)采集系统数据,前端通过HTTP或WebSocket获取并渲染。核心数据流向如下:

mermaid

关键模块对应关系表:

监控维度后端Shell函数系统数据来源前端展示组件
CPU利用率cpu_utilization()/proc/statline-chart-plugin
内存使用current_ram()/proc/meminfoprogress-bar-plugin
网络连接network_connections()netstat命令table-data
磁盘IOio_stats()/proc/diskstatsmulti-line-chart-plugin
用户登录logged_in_users()w命令key-value-list

1.2 WebSocket实时传输实现

server.service.js中,Angular服务通过WebSocket建立持久连接,实现毫秒级数据更新:

// 建立WebSocket连接核心代码
var establishWebsocketConnection = function() {
  var websocketUrl = (location.protocol === 'https:' ? 'wss://' : 'ws://') + window.location.hostname + ':' + window.location.port;
  
  websocket.connection = new WebSocket(websocketUrl);
  
  websocket.connection.onmessage = function(event) {
    var response = JSON.parse(event.data);
    var moduleName = response.moduleName;
    var moduleData = JSON.parse(response.output);
    
    // 调用注册的回调函数处理数据
    if (!!websocket.onMessageEventHandlers[moduleName]) {
      websocket.onMessageEventHandlers[moduleName](moduleData);
    }
  };
};

这种机制使得实时过滤成为可能,特别适合动态监控场景。

二、核心过滤技术:从海量数据中提取关键信息

2.1 参数化筛选:基础过滤配置

适用场景:已知明确筛选条件(如特定进程ID、用户名称、端口号)

通过修改前端请求参数,实现精准数据过滤。以进程监控为例,默认返回所有进程,通过添加筛选参数只显示CPU占用>5%的进程:

// 原始请求(获取所有进程)
server.get('cpu_intensive_processes', function(data) {
  $scope.processes = data;
});

// 添加参数筛选(只显示CPU>5%的进程)
server.get('cpu_intensive_processes', function(data) {
  $scope.highCpuProcesses = data.filter(process => {
    return parseFloat(process['cpu%']) > 5;
  });
});

2.2 正则表达式匹配:高级模式识别

适用场景:模糊匹配(如异常IP模式、可疑进程名、特定日志关键词)

在网络连接监控中,使用正则表达式过滤来自非信任IP段的连接:

// 筛选来自192.168.1.x网段且连接数>10的IP
server.get('network_connections', function(data) {
  const suspiciousIps = data.filter(conn => {
    const ipPattern = /^192\.168\.1\.\d+$/;  // 匹配192.168.1.x网段
    return ipPattern.test(conn.address) && conn.connections > 10;
  });
  
  $scope.suspiciousConnections = suspiciousIps;
  
  // 触发告警逻辑
  if (suspiciousIps.length > 0) {
    $rootScope.$broadcast('alert', {
      type: 'warning',
      message: `发现${suspiciousIps.length}个可疑IP连接`,
      details: suspiciousIps
    });
  }
});

2.3 时间窗口过滤:动态数据趋势分析

适用场景:识别短期波动(如内存泄漏的缓慢增长、周期性CPU峰值)

通过缓存最近N次数据点,计算变化率实现异常检测:

// 内存泄漏检测(记录10分钟数据,计算内存增长率)
var memoryHistory = [];  // 存储时间窗口数据
const WINDOW_SIZE = 60;  // 60个数据点(10分钟,每分钟1个点)

server.get('current_ram', function(data) {
  const timestamp = new Date().getTime();
  memoryHistory.push({
    time: timestamp,
    used: data.used  // 来自current_ram()的已用内存数据
  });
  
  // 保持窗口大小
  if (memoryHistory.length > WINDOW_SIZE) {
    memoryHistory.shift();
  }
  
  // 计算10分钟内存增长率
  if (memoryHistory.length === WINDOW_SIZE) {
    const first = memoryHistory[0].used;
    const last = memoryHistory[WINDOW_SIZE - 1].used;
    const growthRate = ((last - first) / first) * 100;
    
    // 当增长率超过10%时触发告警
    if (growthRate > 10) {
      $scope.memoryLeakDetected = true;
      $scope.growthRate = growthRate.toFixed(2);
    }
  }
  
  $scope.currentMemory = data;
});

三、实战场景:五大核心监控场景的过滤规则

3.1 CPU异常进程定位

场景描述:识别持续高CPU占用(>80%)且运行时间超过5分钟的进程,排除系统关键进程(如systemd、kworker)。

实现代码

// CPU异常进程过滤函数
function filterCpuAbnormalProcesses(rawData) {
  // 排除系统进程列表
  const systemProcesses = ['systemd', 'kworker', 'rcu_sched', 'migration'];
  
  return rawData.filter(process => {
    // 条件1: CPU占用>80%
    const cpuUsage = parseFloat(process['cpu%']);
    // 条件2: 排除系统进程
    const isSystemProcess = systemProcesses.some(sysProc => 
      process.cmd.includes(sysProc)
    );
    // 条件3: 进程运行时间>5分钟(通过ps获取etime转换)
    const runTimeMinutes = getProcessRunTime(process.pid);
    
    return cpuUsage > 80 && !isSystemProcess && runTimeMinutes > 5;
  });
}

// 在控制器中应用过滤
server.get('cpu_intensive_processes', function(data) {
  $scope.abnormalCpuProcesses = filterCpuAbnormalProcesses(data);
  
  // 渲染异常进程表格
  renderProcessTable($scope.abnormalCpuProcesses, 'cpu-abnormal-table');
});

过滤效果对比

原始数据过滤后结果
显示所有CPU占用前15的进程仅显示非系统进程且CPU>80%运行超5分钟的进程
包含systemd(2.3%)、kworker(1.8%)等系统进程只保留用户进程如java(89%)、node(92%)
无时间维度过滤排除短期突发CPU占用(如临时编译任务)

3.2 网络攻击检测:异常连接过滤

场景描述:检测来自同一IP的超过20个并发连接,或包含异常端口(如4444、1337)的连接请求。

实现代码

// 网络连接过滤配置
const networkFilterConfig = {
  maxConnections: 20,  // 单IP最大允许连接数
  suspiciousPorts: [4444, 1337, 31337, 5555],  // 可疑端口列表
  ignoreIps: ['192.168.1.1', '10.0.0.0/8']  // 可信IP/网段
};

// 网络连接过滤函数
function filterSuspiciousConnections(rawData) {
  return rawData.filter(conn => {
    // 提取IP和端口
    const [ip, port] = conn.address.split(':');
    const portNum = parseInt(port, 10);
    
    // 条件1: 连接数超过阈值
    const connectionCount = conn.connections;
    // 条件2: 包含可疑端口
    const hasSuspiciousPort = networkFilterConfig.suspiciousPorts.includes(portNum);
    // 条件3: 不在可信IP列表
    const isTrustedIp = networkFilterConfig.ignoreIps.some(trustedIp => 
      isIpInCidr(ip, trustedIp)  // 实现CIDR匹配函数
    );
    
    return (connectionCount > networkFilterConfig.maxConnections || hasSuspiciousPort) && !isTrustedIp;
  });
}

// WebSocket实时监控网络连接
function monitorNetworkConnections() {
  // 通过WebSocket持续获取连接数据
  websocket.onMessageEventHandlers['network_connections'] = function(data) {
    const suspiciousConnections = filterSuspiciousConnections(data);
    
    if (suspiciousConnections.length > 0) {
      // 显示网络攻击告警
      showAlert({
        title: '可疑网络连接检测',
        severity: 'critical',
        content: `发现${suspiciousConnections.length}个异常连接`,
        details: suspiciousConnections
      });
      
      // 自动阻断建议
      suggestBlockAction(suspiciousConnections);
    }
  };
  
  // 发送监控请求
  websocket.connection.send('network_connections');
}

可视化告警展示

mermaid

3.3 磁盘IO瓶颈定位

场景描述:识别IO等待时间(time字段)超过300ms的磁盘设备,或读写请求队列长度(in_prog.)持续>5的设备。

实现代码

// 磁盘IO过滤函数
function filterHighIoDevices(rawData) {
  return rawData.filter(device => {
    // 条件1: IO等待时间>300ms
    const ioTime = parseInt(device.time, 10);
    // 条件2: 当前请求队列>5
    const requestQueue = parseInt(device['in_prog.'], 10);
    
    // 排除loop设备和CD-ROM
    const isVirtualDevice = device.device.startsWith('loop') || 
                           device.device.startsWith('sr');
                           
    return (ioTime > 300 || requestQueue > 5) && !isVirtualDevice;
  });
}

// 结合历史数据的趋势分析
function analyzeIoTrend(historicalData, currentData) {
  const highIoDevices = filterHighIoDevices(currentData);
  
  // 检查设备是否持续高IO(连续3个采样周期)
  return highIoDevices.filter(device => {
    const deviceHistory = historicalData
      .filter(d => d.device === device.device)
      .slice(-2);  // 获取前2次采样数据
      
    // 连续3次都被标记为高IO
    return deviceHistory.length === 2 && 
           deviceHistory.every(h => h.isHighIo);
  });
}

IO问题诊断流程

mermaid

四、高级功能:构建自定义过滤与可视化系统

4.1 实时数据处理管道扩展

通过修改server.service.js,扩展WebSocket消息处理器,添加自定义过滤逻辑:

// 扩展服务器服务添加数据预处理
angular.module('linuxDash')
  .service('customServer', ['$http', '$rootScope', '$location', function($http, $rootScope, $location) {
    
    // 继承原始server服务
    this.baseServer = angular.injector(['linuxDash']).get('server');
    
    // 自定义过滤管道配置
    this.filterPipelines = {
      'cpu_intensive_processes': [filterCpuAbnormalProcesses],
      'network_connections': [filterSuspiciousConnections],
      'io_stats': [filterHighIoDevices, analyzeIoTrend]
    };
    
    // 带过滤的数据获取方法
    this.getFilteredData = function(moduleName, callback) {
      this.baseServer.get(moduleName, (rawData) => {
        // 执行该模块的过滤管道
        const pipelines = this.filterPipelines[moduleName] || [];
        const processedData = pipelines.reduce((data, filter) => 
          filter(data), rawData);
          
        callback(processedData);
      });
    };
    
    // 批量监控多个模块
    this.monitorModules = function(modules, interval = 5000) {
      const monitoringResults = {};
      
      modules.forEach(module => {
        // 立即获取一次数据
        this.getFilteredData(module, (data) => {
          monitoringResults[module] = data;
        });
        
        // 设置定时刷新
        setInterval(() => {
          this.getFilteredData(module, (data) => {
            monitoringResults[module] = data;
            $rootScope.$broadcast(`filteredData:${module}`, data);
          });
        }, interval);
      });
      
      return monitoringResults;
    };
  }]);

4.2 自定义仪表盘实现

创建包含过滤结果的自定义仪表盘,使用Mermaid渲染系统状态图:

<!-- 自定义仪表盘组件 -->
<div class="custom-dashboard">
  <h3>系统异常监控概览</h3>
  
  <!-- CPU异常进程卡片 -->
  <div class="dashboard-card" ng-if="abnormalCpuProcesses.length > 0">
    <h4>CPU异常进程 ({{abnormalCpuProcesses.length}})</h4>
    <div class="alert alert-warning" ng-if="abnormalCpuProcesses.length > 3">
      警告: 发现{{abnormalCpuProcesses.length}}个持续高CPU进程
    </div>
    <table-data 
      data="abnormalCpuProcesses" 
      columns="pid,user,cpu%,cmd"
      title="异常CPU进程列表">
    </table-data>
  </div>
  
  <!-- 网络攻击监控卡片 -->
  <div class="dashboard-card" ng-if="suspiciousConnections.length > 0">
    <h4>可疑网络连接</h4>
    <div class="mermaid">
      graph LR
        {{suspiciousConnections[0].address}}[{{suspiciousConnections[0].address}}:{{suspiciousConnections[0].connections}}]
        {{suspiciousConnections[1].address}}[{{suspiciousConnections[1].address}}:{{suspiciousConnections[1].connections}}]
        classDef attack fill:#ff4444,stroke:#aa0000
        class {{suspiciousConnections[0].address}},{{suspiciousConnections[1].address}} attack
    </div>
  </div>
  
  <!-- IO瓶颈监控卡片 -->
  <div class="dashboard-card" ng-if="highIoDevices.length > 0">
    <h4>磁盘IO瓶颈</h4>
    <multi-line-chart-plugin 
      data="ioHistoryData"
      x-key="timestamp"
      y-keys="['readLatency', 'writeLatency']"
      series-names="['读延迟(ms)', '写延迟(ms)']">
    </multi-line-chart-plugin>
  </div>
</div>

4.3 配置持久化与分享

通过本地存储保存过滤规则,实现配置持久化:

// 过滤规则存储服务
angular.module('linuxDash')
  .service('filterConfigService', ['$window', function($window) {
    const STORAGE_KEY = 'linuxDashFilterConfigs';
    
    // 保存过滤配置
    this.saveFilterConfig = function(module, config) {
      const existingConfigs = this.getFilterConfigs();
      existingConfigs[module] = config;
      
      $window.localStorage.setItem(STORAGE_KEY, JSON.stringify(existingConfigs));
    };
    
    // 获取过滤配置
    this.getFilterConfigs = function() {
      const configs = $window.localStorage.getItem(STORAGE_KEY);
      return configs ? JSON.parse(configs) : {};
    };
    
    // 导出配置(用于分享)
    this.exportConfig = function() {
      const configs = this.getFilterConfigs();
      return btoa(JSON.stringify(configs));  // Base64编码
    };
    
    // 导入配置
    this.importConfig = function(encodedConfig) {
      try {
        const configs = JSON.parse(atob(encodedConfig));
        $window.localStorage.setItem(STORAGE_KEY, JSON.stringify(configs));
        return true;
      } catch (e) {
        console.error('配置导入失败:', e);
        return false;
      }
    };
  }]);

五、部署与优化:从源码到生产环境

5.1 完整安装流程

# 1. 克隆仓库
git clone https://gitcode.com/gh_mirrors/li/linux-dash
cd linux-dash

# 2. 安装依赖
npm install

# 3. 修改配置文件添加过滤规则
# 编辑src/js/core/server.service.js添加自定义过滤逻辑

# 4. 构建优化版本
npm run build

# 5. 启动服务器
node app/server/index.js --port 8080

5.2 性能优化建议

  1. 数据采样频率调整:在linux_json_api.sh中修改采样间隔,非关键指标从1秒延长至5秒
# 修改CPU利用率采样间隔(原1秒)
cpu_utilization() {
  PREV_TOTAL=0
  PREV_IDLE=0
  iteration=0

  while [[ iteration -lt 2 ]]; do
    CPU=(`sed -n 's/^cpu\s//p' /proc/stat`)
    IDLE=${CPU[3]}
    TOTAL=0
    for VALUE in "${CPU[@]}"; do
      let "TOTAL=$TOTAL+$VALUE"
    done
    let "DIFF_IDLE=$IDLE-$PREV_IDLE"
    let "DIFF_TOTAL=$TOTAL-$PREV_TOTAL"
    let "DIFF_USAGE=(1000*($DIFF_TOTAL-$DIFF_IDLE)/$DIFF_TOTAL+5)/10"
    PREV_TOTAL="$TOTAL"
    PREV_IDLE="$IDLE"
    sleep 2  # 从1秒改为2秒采样间隔
    iteration="$iteration+1"
  done
  echo -en "$DIFF_USAGE"
}
  1. WebSocket连接复用:确保单个连接处理多模块数据请求,减少连接开销

  2. 前端渲染优化:对大数据集表格使用虚拟滚动(Virtual Scrolling)

// 添加虚拟滚动指令
angular.module('linuxDash')
  .directive('virtualScroll', function() {
    return {
      restrict: 'A',
      link: function(scope, element, attrs) {
        const container = element[0];
        const itemHeight = 40;  // 每行高度固定
        let visibleItems = 20;  // 可见行数
        
        // 监听滚动事件
        container.addEventListener('scroll', () => {
          const scrollTop = container.scrollTop;
          const startIndex = Math.floor(scrollTop / itemHeight);
          const endIndex = startIndex + visibleItems;
          
          // 只渲染可见区域数据
          scope.$apply(() => {
            scope.visibleData = scope.rawData.slice(startIndex, endIndex);
          });
        });
        
        // 初始化
        scope.$watch('rawData', () => {
          scope.visibleData = scope.rawData.slice(0, visibleItems);
          container.style.height = `${visibleItems * itemHeight}px`;
        });
      }
    };
  });

六、总结与进阶路线

6.1 关键成果总结

本文通过参数筛选正则匹配时间窗口三大过滤技术,结合五大核心监控场景,构建了完整的Linux Dash高级数据过滤系统。主要成果包括:

  1. 实现了从原始系统数据到精准问题定位的全流程优化
  2. 建立了可复用的过滤规则模板(CPU/内存/网络/磁盘/用户)
  3. 构建了基于WebSocket的实时监控管道
  4. 提供了可视化配置与分享机制

6.2 进阶学习路线

  1. 数据聚合:集成Prometheus实现历史数据存储与聚合分析
  2. 智能告警:添加机器学习算法识别异常模式(如Isolation Forest)
  3. 自动化响应:对接Ansible实现问题自动修复(如kill僵尸进程)
  4. 多节点监控:扩展为分布式系统监控,统一筛选多服务器数据

点赞收藏本文,关注作者获取更多Linux系统监控实战技巧!下期预告:《基于ELK+Linux Dash的系统日志智能分析平台》

通过本文介绍的方法,Linux Dash将从简单的系统信息展示工具,蜕变为能够主动发现并定位系统问题的智能监控平台。关键在于理解数据结构、设计合理的过滤规则,并结合可视化技术将隐藏的系统问题显性化。

【免费下载链接】linux-dash A beautiful web dashboard for Linux 【免费下载链接】linux-dash 项目地址: https://gitcode.com/gh_mirrors/li/linux-dash

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值