wgbstools:DNA甲基化测序数据处理与分析的利器
项目介绍
wgbstools 是一款专为亚硫酸氢盐测序数据设计的高效计算工具集。它不仅能够快速访问和压缩高吞吐量数据,还提供了从片段级到位点特异性数据的机器学习、统计分析以及丰富的可视化功能。通过将标准格式(如bam、bed)转换为定制的紧凑格式(如pat、beta),wgbstools使得数据处理更加直观和高效。
项目技术分析
wgbstools的核心技术在于其对DNA甲基化数据的紧凑表示和高效处理。它利用了多种数据格式转换技术,将原始测序数据转换为易于分析和可视化的格式。此外,wgbstools还集成了多种机器学习和统计分析工具,使得用户可以轻松进行复杂的数据分析任务。
主要技术点:
- 数据格式转换:支持从bam、bed等标准格式转换为pat、beta等定制格式。
- 高效数据访问:通过压缩技术,实现对大规模数据的高效访问。
- 可视化工具:提供终端内的数据可视化功能,支持热图等多种可视化方式。
- 机器学习与统计分析:内置多种分析工具,支持从简单统计到复杂模型的构建。
项目及技术应用场景
wgbstools适用于多种DNA甲基化测序数据的处理和分析场景,包括但不限于:
- 生物信息学研究:用于处理和分析大规模的DNA甲基化测序数据。
- 临床研究:支持从临床样本中提取和分析DNA甲基化数据,辅助疾病诊断和治疗。
- 教育与培训:作为教学工具,帮助学生和研究人员理解DNA甲基化数据处理的基本原理和方法。
项目特点
- 高效性:通过数据压缩和高效访问技术,显著提升数据处理速度。
- 多功能性:集成了数据转换、可视化、机器学习和统计分析等多种功能。
- 易用性:提供简单易懂的命令行接口,用户可以快速上手。
- 定制化:支持多种数据格式的转换和定制化分析,满足不同用户的需求。
快速开始
安装
# 克隆仓库
git clone https://github.com/nloyfer/wgbs_tools.git
cd wgbs_tools
# 编译
python setup.py
配置参考基因组
至少需要配置一个参考基因组(耗时几分钟)。
wgbstools init_genome GENOME_NAME
# 例如
wgbstools init_genome hg19
wgbstools init_genome mm9
wgbstools会从UCSC网站下载所需的参考FASTA文件。如果用户有自己的参考FASTA文件,可以通过以下方式指定路径:
wgbstools init_genome GENOME_NAME --fasta_path /path/to/genome.fa
依赖项
- Python 3+,需要以下库:
- pandas 1.0+
- numpy
- scipy
- samtools
- tabix / bgzip
部分功能需要额外依赖:
- bedtools
使用示例
现在可以从bam文件生成pat.gz和beta文件:
wgbstools bam2pat Sigmoid_Colon_STL003.bam
# 输出:
# Sigmoid_Colon_STL003.pat.gz
# Sigmoid_Colon_STL003.beta
生成pat和beta文件后,可以使用wgbstools进行可视化。例如:
wgbstools vis Sigmoid_Colon_STL003.pat.gz -r chr3:119528843-119529245

wgbstools vis *.beta -r chr3:119528843-119529245 --heatmap

参考文献
如果使用wgbstools,请引用:
Loyfer et al. (2024) ‘wgbstools: A computational suite for DNA methylation sequencing data representation, visualization, and analysis’, bioRxiv ,2024.