10分钟上手Figma-Context-MCP:从环境搭建到AI设计协作全流程
还在为Figma设计稿转代码效率低而烦恼?本文将带你10分钟搭建Figma-Context-MCP开发环境,实现AI编码代理与Figma的无缝协作,让设计到代码的转化效率提升300%。读完本文你将掌握:pnpm与TypeScript项目初始化、Figma API密钥配置、MCP服务器启动与验证,以及在Cursor中使用Figma上下文的完整流程。
项目核心价值与架构
Figma-Context-MCP是基于Model Context Protocol(MCP协议)的服务器,为Cursor等AI编码代理提供Figma设计数据访问能力。通过精简和翻译Figma API响应,仅向AI模型提供最相关的布局和样式信息,解决了传统截图粘贴方式导致的设计还原度低、上下文缺失等问题。
项目核心模块结构:
- MCP服务器核心:src/mcp-server.ts
- Figma数据提取器:src/extractors/
- Figma API服务:src/services/figma.ts
- 命令行入口:src/bin.ts
环境准备与依赖安装
系统要求
- Node.js ≥ 18.0.0(推荐使用v20+)
- pnpm ≥ 10.10.0(项目指定包管理器)
- Git
快速安装步骤
- 克隆仓库
git clone https://gitcode.com/gh_mirrors/fi/Figma-Context-MCP.git
cd Figma-Context-MCP
- 安装依赖
pnpm install
- 构建项目
pnpm run build
项目使用TypeScript开发,构建过程会将源码编译至
dist目录。构建配置文件:tsup.config.ts
Figma API密钥配置
获取Figma个人访问令牌
- 登录Figma账号,进入账户设置 → 个人访问令牌
- 点击"创建新令牌",输入名称(如"MCP-Server")并设置权限
- 复制生成的令牌(仅显示一次,建议立即保存)
配置方式选择
方式1:环境变量配置
创建.env文件(项目根目录):
FIGMA_API_KEY=your_figma_token_here
PORT=3000
环境变量加载逻辑见:src/bin.ts
方式2:命令行参数传递
启动服务器时直接指定:
pnpm start -- --figma-api-key=your_figma_token_here --port=3000
方式3:配置文件集成
在代码编辑器的MCP服务器配置中添加(以Cursor为例):
{
"mcpServers": {
"Framelink MCP for Figma": {
"command": "npx",
"args": ["-y", "figma-developer-mcp", "--figma-api-key=YOUR-KEY", "--stdio"]
}
}
}
服务器启动与验证
启动命令
# 开发模式(带热重载)
pnpm run dev
# 生产模式
pnpm start
# 命令行交互模式
pnpm run start:cli
验证服务器运行状态
- 服务器启动成功后,会显示"Server running on port 3000"
- 访问
http://localhost:3000,应返回MCP服务器状态信息 - 在Cursor中配置MCP服务器路径,测试连接
AI设计协作实战
复制Figma设计链接
在Figma中打开目标文件,选择需要共享的框架或组件,点击右上角"分享"按钮,复制链接:
在Cursor中使用Figma上下文
- 打开Cursor,进入代理模式(Cmd+Shift+P → "Toggle Agent Mode")
- 粘贴Figma链接并提问,例如:"基于这个设计实现React组件"
- AI将自动获取Figma设计上下文,生成更精准的代码实现
常见问题与解决方案
依赖安装失败
- 问题:pnpm install提示依赖冲突
- 解决:删除
node_modules和pnpm-lock.yaml后重试
rm -rf node_modules pnpm-lock.yaml
pnpm install
服务器启动失败
- 问题:"Figma API key is required"错误
- 解决:确保正确配置
FIGMA_API_KEY环境变量或命令行参数
Cursor无法连接服务器
- 问题:MCP服务器连接超时
- 解决:检查服务器是否运行,端口是否被占用,配置文件是否正确
进阶配置与自定义
修改服务器端口
pnpm start -- --port=4000
# 或设置环境变量
PORT=4000 pnpm start
开发自定义数据提取器
可通过扩展src/extractors/目录下的提取器,自定义Figma数据处理逻辑。参考现有实现:design-extractor.ts
总结与后续学习
通过本文你已掌握Figma-Context-MCP的完整搭建流程,实现了AI编码代理与Figma的高效协作。下一步可深入学习:
- MCP协议规范:官方文档
- 项目路线图:ROADMAP.md
- 贡献指南:CONTRIBUTING.md
点赞+收藏+关注,获取Figma与AI协作的更多进阶技巧!下期预告:《Figma组件库与MCP服务器的深度集成》
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考






