requests-cache 使用教程
项目介绍
requests-cache 是一个为 python requests 库提供持久化 HTTP 缓存的库。它能够显著提升性能,通过缓存响应来减少重复的网络请求。requests-cache 支持多种存储后端,包括 SQLite、Redis、MongoDB 和 DynamoDB,也可以将响应保存为 JSON 或 YAML 文件。
项目快速启动
安装
首先,你需要安装 requests-cache。你可以使用 pip 进行安装:
pip install requests-cache
基本使用
以下是一个简单的示例,展示了如何使用 requests-cache 来缓存 HTTP 请求:
import requests
import requests_cache
# 初始化缓存会话
session = requests_cache.CachedSession('demo_cache')
# 发起请求
response = session.get('https://httpbin.org/delay/1')
# 检查是否从缓存中获取响应
print(response.from_cache)
应用案例和最佳实践
应用案例
假设你有一个需要频繁访问外部 API 的应用,使用 requests-cache 可以显著减少响应时间:
import requests_cache
session = requests_cache.CachedSession('api_cache')
for i in range(60):
response = session.get('https://httpbin.org/delay/1')
print(f"Request {i+1}: {response.from_cache}")
最佳实践
- 设置缓存过期时间:根据你的需求设置合适的缓存过期时间,以确保数据的实时性。
- 选择合适的存储后端:根据你的应用场景选择合适的存储后端,例如,对于分布式应用,Redis 或 MongoDB 可能是更好的选择。
- 监控缓存使用情况:定期检查缓存的使用情况,确保缓存不会无限制地增长。
典型生态项目
requests-cache 可以与其他 Python 库和工具结合使用,以进一步提升性能和功能:
- Flask:在 Flask 应用中使用
requests-cache来缓存外部 API 请求。 - Celery:在 Celery 任务中使用
requests-cache来减少重复的网络请求。 - Pandas:在数据处理过程中使用
requests-cache来缓存数据源,加快数据加载速度。
通过结合这些生态项目,你可以构建更高效、更可靠的应用程序。
16万+

被折叠的 条评论
为什么被折叠?



