requests-cache 使用教程

requests-cache 使用教程

requests-cacherequests-cache/requests-cache: requests-cache是Python中requests库的一个插件,它为requests库提供了缓存机制,可以将HTTP请求的响应结果存储在本地缓存中,从而提高重复请求时的性能并减少网络延迟。项目地址:https://gitcode.com/gh_mirrors/re/requests-cache

项目介绍

requests-cache 是一个为 python requests 库提供持久化 HTTP 缓存的库。它能够显著提升性能,通过缓存响应来减少重复的网络请求。requests-cache 支持多种存储后端,包括 SQLite、Redis、MongoDB 和 DynamoDB,也可以将响应保存为 JSON 或 YAML 文件。

项目快速启动

安装

首先,你需要安装 requests-cache。你可以使用 pip 进行安装:

pip install requests-cache

基本使用

以下是一个简单的示例,展示了如何使用 requests-cache 来缓存 HTTP 请求:

import requests
import requests_cache

# 初始化缓存会话
session = requests_cache.CachedSession('demo_cache')

# 发起请求
response = session.get('https://httpbin.org/delay/1')

# 检查是否从缓存中获取响应
print(response.from_cache)

应用案例和最佳实践

应用案例

假设你有一个需要频繁访问外部 API 的应用,使用 requests-cache 可以显著减少响应时间:

import requests_cache

session = requests_cache.CachedSession('api_cache')

for i in range(60):
    response = session.get('https://httpbin.org/delay/1')
    print(f"Request {i+1}: {response.from_cache}")

最佳实践

  1. 设置缓存过期时间:根据你的需求设置合适的缓存过期时间,以确保数据的实时性。
  2. 选择合适的存储后端:根据你的应用场景选择合适的存储后端,例如,对于分布式应用,Redis 或 MongoDB 可能是更好的选择。
  3. 监控缓存使用情况:定期检查缓存的使用情况,确保缓存不会无限制地增长。

典型生态项目

requests-cache 可以与其他 Python 库和工具结合使用,以进一步提升性能和功能:

  1. Flask:在 Flask 应用中使用 requests-cache 来缓存外部 API 请求。
  2. Celery:在 Celery 任务中使用 requests-cache 来减少重复的网络请求。
  3. Pandas:在数据处理过程中使用 requests-cache 来缓存数据源,加快数据加载速度。

通过结合这些生态项目,你可以构建更高效、更可靠的应用程序。

requests-cacherequests-cache/requests-cache: requests-cache是Python中requests库的一个插件,它为requests库提供了缓存机制,可以将HTTP请求的响应结果存储在本地缓存中,从而提高重复请求时的性能并减少网络延迟。项目地址:https://gitcode.com/gh_mirrors/re/requests-cache

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐天铭Paxton

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值