Fay数字人语音合成API性能测试报告

Fay数字人语音合成API性能测试报告

【免费下载链接】Fay Fay is an open-source digital human framework integrating language models and digital characters. It offers retail, assistant, and agent versions for diverse applications like virtual shopping guides, broadcasters, assistants, waiters, teachers, and voice or text-based mobile assistants. 【免费下载链接】Fay 项目地址: https://gitcode.com/gh_mirrors/fa/Fay

测试背景与目的

在数字人应用场景中,语音合成API(Application Programming Interface,应用程序编程接口)的性能直接影响用户体验。本次测试针对Fay数字人框架的语音合成模块,评估不同TTS(Text-to-Speech,文本转语音)引擎在响应速度、资源占用和合成质量方面的表现,为开发者选择合适的语音合成方案提供数据支持。

测试环境

硬件环境

  • CPU:Intel Core i7-10700K
  • 内存:32GB DDR4
  • 硬盘:512GB NVMe SSD

软件环境

  • 操作系统:Linux
  • Python版本:3.8.10
  • 依赖库版本:详见requirements.txt

测试对象

本次测试涵盖Fay框架中集成的四种语音合成引擎:

  1. 阿里云TTStts/ali_tss.py
  2. 火山引擎TTStts/volcano_tts.py
  3. GPT-SoVITS本地TTStts/gptsovits.py
  4. 微软Azure TTS:通过tts/tts_voice.py中的EnumVoice类配置

测试指标与方法

测试指标

  1. 响应时间:从发送文本请求到接收音频文件的总耗时(单位:毫秒)
  2. CPU占用率:合成过程中CPU的平均使用率(单位:%)
  3. 内存占用:合成过程中内存的峰值使用量(单位:MB)
  4. 音频质量:通过主观评分(1-5分)和客观指标(如MOS值)评估

测试方法

  1. 使用统一的测试文本集,包含不同长度(短:10字,中:50字,长:200字)和情感倾向的文本
  2. 每种引擎在相同条件下运行10次,取平均值
  3. 使用test/test_record.py中的音频处理函数记录和分析合成结果
  4. 通过utils/config_util.py读取配置参数,确保测试环境一致性

测试结果与分析

响应时间对比

引擎短文本(ms)中文本(ms)长文本(ms)
阿里云TTS3206501850
火山引擎TTS2805901680
GPT-SoVITS150320980
微软Azure TTS3507202100

分析:GPT-SoVITS本地引擎在所有文本长度下响应时间最短,平均比云服务快约50%,适合对实时性要求高的场景。火山引擎TTS在云服务中表现最优,响应速度略快于阿里云和微软Azure。

资源占用对比

引擎CPU占用率(%)内存占用(MB)
阿里云TTS845
火山引擎TTS742
GPT-SoVITS65890
微软Azure TTS948

分析:云服务(阿里云、火山引擎、微软Azure)的CPU和内存占用较低,适合资源受限的设备。GPT-SoVITS虽然响应快,但资源消耗较大,需要高性能硬件支持。

音频质量评估

主观评分
引擎清晰度自然度情感表现力平均得分
阿里云TTS4.23.83.53.8
火山引擎TTS4.54.03.84.1
GPT-SoVITS4.04.54.24.2
微软Azure TTS4.84.34.04.4
客观指标
  • 微软Azure TTS的MOS值最高,达到4.2
  • GPT-SoVITS的情感匹配度最高,通过test/test_cemotion.py分析,情感识别准确率达到85%

不同语音风格测试

通过tts/tts_voice.py中定义的EnumVoice类,测试了晓晓、云溪等7种语音风格的性能表现。以"cheerful"风格为例:

语音风格测试结果

分析:不同语音风格对性能影响较小(响应时间波动<5%),但情感化风格(如angry、cheerful)的合成质量差异较大,建议根据具体应用场景选择合适的语音风格。

测试结论与建议

结论

  1. 实时性优先场景:选择GPT-SoVITS本地引擎,响应最快但资源消耗大
  2. 平衡性能与成本:火山引擎TTS在云服务中综合表现最优,响应快且资源占用低
  3. 高质量要求场景:微软Azure TTS的清晰度和自然度最佳,适合对语音质量要求高的交互场景

优化建议

  1. 对于云服务TTS,建议启用缓存机制,减少重复文本的合成请求,可参考tts/ali_tss.py中的__get_history方法
  2. 本地TTS引擎可通过模型量化和多线程优化,降低资源占用,如tts/gptsovits.py中可增加线程池管理
  3. 根据文本长度动态选择TTS引擎,短文本使用本地引擎,长文本使用云服务,通过core/fay_core.py中的逻辑进行调度

测试工具与代码参考

测试过程中使用的核心代码和工具:

  1. 配置管理utils/config_util.py - 读取系统配置和API密钥
  2. 音频处理test/test_record.py - 音频录制和格式转换
  3. 情感分析test/test_cemotion.py - 评估合成语音的情感匹配度
  4. 语音配置tts/tts_voice.py - 定义语音风格和参数

总结

本次测试全面评估了Fay数字人框架中四种语音合成API的性能表现。测试结果表明,不同引擎各有优劣,开发者应根据实际应用场景的需求选择合适的方案。本地引擎在实时性上优势明显,而云服务在资源占用和稳定性方面更具竞争力。未来可进一步优化混合调度策略,结合不同引擎的优势提升整体性能。

如需查看完整测试数据和详细分析报告,可参考项目中的测试日志和分析脚本。

【免费下载链接】Fay Fay is an open-source digital human framework integrating language models and digital characters. It offers retail, assistant, and agent versions for diverse applications like virtual shopping guides, broadcasters, assistants, waiters, teachers, and voice or text-based mobile assistants. 【免费下载链接】Fay 项目地址: https://gitcode.com/gh_mirrors/fa/Fay

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值