Optimeyes 项目启动与配置教程

Optimeyes 项目启动与配置教程

1. 项目目录结构及介绍

Optimeyes 项目是一个基于 Python 和 OpenCV 的眼球追踪和视线估计的开源项目。以下是项目的目录结构及各部分功能的简要介绍:

  • haarcascades/:包含用于人脸和眼睛检测的 Haar 级联文件。
  • adam_descriptors.py:可能包含用于特征描述的代码,但具体功能未明。
  • ClassyVirtualReferencePoint.py:实现虚拟参考点的类,这是项目中的一个关键特性。
  • demo.avi:一个演示视频,展示眼球追踪的效果。
  • eyeDetect.py:项目的启动文件,用于执行眼球追踪和视线估计的主程序。
  • gaussianBlur.png:一个图像文件,用于演示高斯模糊的效果。
  • LICENSE.txt:项目的许可证文件,本项目采用 MIT 许可证。
  • Optimeyes Theory Paper.pdf:项目的理论论文,详细介绍了项目的工作原理和关键特性。
  • pygamestuff.py:可能包含与 Pygame 相关的代码,用于创建图形界面。
  • ransac.py:实现 RANSAC 算法的代码,用于稳健的参数估计。
  • README.md:项目的自述文件,包含项目的简介、安装和运行说明。
  • requirements.txt:项目依赖文件,列出了项目运行所需的 Python 包。
  • testHaarCascade.py:一个测试文件,用于验证 Haar 级联文件的有效性。

2. 项目的启动文件介绍

项目的启动文件是 eyeDetect.py。该文件负责初始化摄像头,进行人脸和眼睛的检测,追踪瞳孔,并估计视线。首次运行时,需要确保 doTraining 变量设置为 False,这样程序会以图形方式显示瞳孔中心,帮助用户校准和训练眼球追踪模型。当瞳孔追踪效果稳定后,可以将 doTraining 设置为 True,进入训练模式,通过用户点击屏幕上的随机点来收集数据,进一步优化视线估计。

3. 项目的配置文件介绍

项目的配置主要通过 requirements.txt 文件进行。该文件列出了项目运行所依赖的 Python 包,例如 OpenCV。根据操作系统(Windows 或 Linux)的不同,安装 OpenCV 的方法会有所不同。以下是一个基本的配置步骤:

  • 使用 pip 工具安装项目依赖:pip install -r requirements.txt
  • 对于 Windows 用户,需要从源代码构建并安装带有 contrib 和 non-free 模块的 OpenCV。
  • 对于 Linux 用户,同样需要安装构建依赖,并从源代码构建 OpenCV。

确保正确安装了所有依赖项后,就可以运行 eyeDetect.py 文件来启动项目了。需要注意的是,在运行之前,确保摄像头被正确连接并配置,以便程序能够访问摄像头数据。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值