Optimeyes 项目启动与配置教程
1. 项目目录结构及介绍
Optimeyes 项目是一个基于 Python 和 OpenCV 的眼球追踪和视线估计的开源项目。以下是项目的目录结构及各部分功能的简要介绍:
haarcascades/:包含用于人脸和眼睛检测的 Haar 级联文件。adam_descriptors.py:可能包含用于特征描述的代码,但具体功能未明。ClassyVirtualReferencePoint.py:实现虚拟参考点的类,这是项目中的一个关键特性。demo.avi:一个演示视频,展示眼球追踪的效果。eyeDetect.py:项目的启动文件,用于执行眼球追踪和视线估计的主程序。gaussianBlur.png:一个图像文件,用于演示高斯模糊的效果。LICENSE.txt:项目的许可证文件,本项目采用 MIT 许可证。Optimeyes Theory Paper.pdf:项目的理论论文,详细介绍了项目的工作原理和关键特性。pygamestuff.py:可能包含与 Pygame 相关的代码,用于创建图形界面。ransac.py:实现 RANSAC 算法的代码,用于稳健的参数估计。README.md:项目的自述文件,包含项目的简介、安装和运行说明。requirements.txt:项目依赖文件,列出了项目运行所需的 Python 包。testHaarCascade.py:一个测试文件,用于验证 Haar 级联文件的有效性。
2. 项目的启动文件介绍
项目的启动文件是 eyeDetect.py。该文件负责初始化摄像头,进行人脸和眼睛的检测,追踪瞳孔,并估计视线。首次运行时,需要确保 doTraining 变量设置为 False,这样程序会以图形方式显示瞳孔中心,帮助用户校准和训练眼球追踪模型。当瞳孔追踪效果稳定后,可以将 doTraining 设置为 True,进入训练模式,通过用户点击屏幕上的随机点来收集数据,进一步优化视线估计。
3. 项目的配置文件介绍
项目的配置主要通过 requirements.txt 文件进行。该文件列出了项目运行所依赖的 Python 包,例如 OpenCV。根据操作系统(Windows 或 Linux)的不同,安装 OpenCV 的方法会有所不同。以下是一个基本的配置步骤:
- 使用 pip 工具安装项目依赖:
pip install -r requirements.txt - 对于 Windows 用户,需要从源代码构建并安装带有 contrib 和 non-free 模块的 OpenCV。
- 对于 Linux 用户,同样需要安装构建依赖,并从源代码构建 OpenCV。
确保正确安装了所有依赖项后,就可以运行 eyeDetect.py 文件来启动项目了。需要注意的是,在运行之前,确保摄像头被正确连接并配置,以便程序能够访问摄像头数据。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考



