WhisperSpeech: 开源文本转语音系统
WhisperSpeech 是一个基于 Whisper 模型反转的开源文本转语音(TTS)系统。该项目主要由 Python 编程语言实现,结合了先进的深度学习技术,致力于提供高质量、易于定制化的语音合成解决方案。
项目的基础介绍
WhisperSpeech 项目的目标是创建一个类似于 Stable Diffusion 的语音合成系统,既强大又易于定制。该项目使用了一系列开源模型和技术,包括 OpenAI 的 Whisper 模型用于生成语义标记,Meta 的 EnCodec 用于声学建模,以及 Charactr Inc 的 Vocos 作为高质量的声音解码器。WhisperSpeech 允许用户在没有地面真实转录的情况下,通过音频文件训练模型,这使得多语言支持成为可能。
核心功能
WhisperSpeech 的核心功能包括:
- 文本转语音:将文本转换为自然流畅的语音。
- 多语言支持:目前支持英语,并计划扩展到更多语言。
- 语音克隆:基于参考音频文件,克隆特定说话人的声音。
- 性能优化:通过技术创新,实现了比实时速度快12倍的推理性能。
最近更新的功能
WhisperSpeech 最近更新的功能包括:
- 性能优化:通过集成
torch.compile
,添加kv-caching
和调整某些层,提高了推理性能。 - 多语言混合:在单个句子中混合使用多种语言,实现无缝语音转换。
- 语音克隆示例:提供了基于著名演讲的语音克隆示例,如温斯顿·丘吉尔的演讲。
- 模型更新:推出了新的 SD S2A 模型,速度更快,同时保持高音质输出。
WhisperSpeech 项目的持续更新和发展,使其成为一个值得关注和使用的开源文本转语音系统。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考