揭秘AI系统提示:GitHub热门项目MD文件结构全解析
在AI技术快速发展的今天,系统提示词(System Prompt)作为AI行为的"隐形指挥官",其重要性不言而喻。GitHub热门项目GitHub_Trending/le/leaked-prompts收集了大量来自主流AI服务的泄露系统提示,这些宝贵资料全部以MD(Markdown)格式存储。本文将深入剖析这些MD文件的标准结构,帮助您快速掌握阅读和利用这些AI系统提示的技巧。
项目概述与文件组织
该项目是一个专注于收集主流AI服务泄露系统提示的开源仓库,官方描述为"Collection of leaked system prompts"。项目采用直观的文件命名规则,所有系统提示均以MD文件格式存储,文件名遵循[服务名称]_[版本信息]_[日期].md的命名规范,例如anthropic-claude-3-opus_20240712.md表示Anthropic公司2024年7月12日泄露的Claude 3 Opus版本系统提示。
项目根目录下包含了上百个MD文件,涵盖了从ChatGPT、Claude到Gemini等几乎所有主流AI服务的系统提示。此外,还有一个images/目录,存储了与DALL-E 3相关的图片资源,如:
MD文件基本结构解析
通过分析项目中的MD文件,我们发现这些系统提示文件遵循相对统一的结构,主要包含以下几个核心部分:
1. 文件头信息
每个MD文件开头通常包含项目来源和基本说明,如v0_20250306.md的开头:
# v0_20250306
Source: [x1xhlol/v0-system-prompts-and-models](https://github.com/x1xhlol/v0-system-prompts-and-models)
这部分标明了文件主题和信息来源,帮助读者快速了解文件内容背景。
2. 核心指令部分
这是系统提示的核心内容,通常使用二级标题##组织不同类别的指令。以v0_20250306.md为例,包含了以下主要指令章节:
- Introduction:AI助手的基本身份介绍
- General Instructions:通用行为准则
- Code Project Instructions:代码项目相关特殊指令
- Image and Media Handling:图片和媒体处理规范
- Diagrams and Math:图表和数学公式处理方式
每个章节下包含具体的指令细节,如通用指令部分明确要求:"Always up-to-date with the latest technologies and best practices. Use MDX format for responses, allowing embedding of React components."
3. 交互示例部分
许多系统提示文件包含了示例对话或使用场景,展示AI助手应如何根据指令响应用户查询。例如xAI-grok3_20250223.md中包含了多轮对话示例:
## Full QnA
### Q(User)
[用户问题内容]
### A(Grok 3)
[AI回答内容]
这些示例对于理解系统提示的实际应用效果非常有帮助。
高级结构特征与格式规范
除了基本结构外,这些MD文件还包含一些高级特征和格式规范,体现了系统提示的专业性和复杂性:
1. 代码块与语法高亮
系统提示中大量使用代码块来定义格式规范或展示示例代码,如v0_20250306.md中展示如何使用AI SDK:
import { generateText } from "ai"
import { openai } from "@ai-sdk/openai"
const { text } = await generateText({
model: openai("gpt-4o"),
prompt: "What is love?"
})
2. Mermaid图表表示
部分系统提示使用Mermaid语法绘制流程图,使复杂逻辑关系可视化。如v0_20250306.md中包含的流程图定义:
3. 环境变量与配置信息
一些系统提示文件包含了环境变量和配置参数的定义,如v0_20250306.md中列出的可用环境变量:
<key>NEXT_PUBLIC_FIREBASE_API_KEY</key>
<comment>Added in v0</comment>
<key>NEXT_PUBLIC_FIREBASE_AUTH_DOMAIN</key>
<comment>Added in v0</comment>
不同类型AI系统提示的结构差异
虽然大部分MD文件遵循相似的基本结构,但不同类型的AI服务在系统提示的组织上仍存在一些差异:
对话型AI(如Claude、ChatGPT)
以anthropic-claude-3-opus_20240712.md为代表的对话型AI系统提示,更注重定义对话规则、安全准则和响应风格,通常包含大量Q&A示例。
工具型AI(如v0、GitHub Copilot)
以v0_20250306.md和github-copilot-chat_20240930.md为代表的工具型AI系统提示,则更详细地定义了代码生成规则、项目结构规范和工具调用方式。
图像生成型AI(如DALL-E 3)
与图像生成相关的系统提示,如openai-dall-e-3_20231007-1.md,会包含大量视觉风格定义和图像生成参数,并且常与images/目录中的示例图片配合使用。
文件结构可视化分析
为了更直观地理解这些MD文件的结构,我们可以通过以下Mermaid流程图概括:
如何高效阅读和利用这些MD文件
掌握以下技巧可以帮助您更高效地阅读和利用这些系统提示MD文件:
-
通过文件名快速定位:利用
服务名称-版本-日期的命名规则,快速找到您感兴趣的AI系统提示。 -
关注##级标题:这些标题标识了系统提示的主要章节,帮助您快速跳转到感兴趣的部分。
-
利用代码块学习具体规范:系统提示中的代码块通常包含了最关键的行为定义,如v0_20250306.md中关于代码项目的详细规范。
-
结合示例理解实际应用:Q&A示例部分展示了系统提示在实际对话中的应用效果,是理解AI行为逻辑的重要途径。
-
对比不同版本发现变化:通过对比同一AI服务的不同版本(如anthropic-claude-3-sonnet_20240306.md和anthropic-claude-3.5-sonnet_20241122.md),可以发现AI系统提示的演变规律。
总结与展望
GitHub热门项目GitHub_Trending/le/leaked-prompts中的MD文件为我们提供了一个独特的视角,让我们得以一窥AI系统提示的设计奥秘。这些文件遵循相对统一的结构规范,同时又根据AI服务的类型和功能有所差异。
通过本文介绍的MD文件结构解析方法,您可以更高效地阅读和利用这些宝贵的资源,深入理解不同AI系统的行为逻辑和设计理念。随着AI技术的不断发展,这些系统提示文件也将持续更新,为我们研究AI演进提供重要参考。
建议您收藏本项目,并定期查看更新,以跟上AI系统提示的最新发展。如果您发现了新的系统提示或对现有文件有更好的解读,也欢迎通过项目的贡献指南参与到项目中来。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考





