手语手势识别项目指南

手语手势识别项目指南

sign-language-gesture-recognition Sign Language Gesture Recognition From Video Sequences Using RNN And CNN sign-language-gesture-recognition 项目地址: https://gitcode.com/gh_mirrors/si/sign-language-gesture-recognition

项目介绍

该项目是一个基于循环神经网络(RNN)和卷积神经网络(CNN)的手势识别系统,专门用于从视频序列中识别手语手势。它利用了深度学习技术处理视频帧,首先通过CNN提取图像特征,再通过RNN模型处理时间序列数据来识别连续手势动作。该项目最初是基于阿根廷手语数据集开发的,适合学术研究和教育用途。请注意,使用数据集时应遵循其提供的许可条款。

项目快速启动

环境准备

确保您已安装以下必要的软件包:

  • OpenCV(建议从源码编译以获取完整的视频处理功能)
  • TensorFlow
  • TFLearn

安装命令示例:

pip install opencv-python-headless
pip install tensorflow
pip install tflearn

步骤操作

  1. 克隆项目: 使用Git克隆项目到本地。

    git clone https://github.com/hthuwal/sign-language-gesture-recognition.git
    
  2. 数据准备: 创建训练和测试视频文件夹,并按类别组织视频文件。

  3. 提取帧: 运行脚本以从视频中抽取帧。

    python3 ./video-to-frame.py train_videos train_frames
    python3 ./video-to-frame.py test_videos test_frames
    
  4. 模型重训练: 下载并使用TensorFlow的retrain.py对Inception v3模型进行微调。

    curl -LO https://raw.githubusercontent.com/tensorflow/hub/master/examples/image_retraining/retrain.py
    python3 retrain.py --bottleneck_dir=bottlenecks --image_dir=train_frames
    
  5. 生成中间表示: 使用Inception模型预测每帧的输出,作为RNN的输入。

    python3 ./predict_spatial.py retrained_graph.pb train_frames
    
  6. 训练RNN:

    python3 ./rnn_train.py predicted-frames-final_result-train.pkl non_pool.model
    
  7. 评估模型:

    python3 ./rnn_eval.py predicted-frames-final_result-test.pkl non_pool.model
    

应用案例和最佳实践

本项目在教育和辅助技术领域有着广泛的应用潜力,例如开发手语翻译应用程序,帮助聋哑人与听觉正常的人更流畅沟通。最佳实践包括持续优化模型以适应更多手语词汇,以及增加数据多样性以提高泛化能力。

典型生态项目

虽然该项目本身形成了一个独立的研究和实现案例,但类似的开源项目和技术可以构成本项目的生态系统,例如结合OpenCV的人工智能工具箱用于实时手部追踪,或者使用Unity和ML-Agents创建交互式的虚拟环境来模拟手语教学场景。此外,探索与其他手语数据集的兼容性,比如ASL手势库,也能拓宽项目的应用范围。


此文档旨在提供快速入门指导,深入的学习和定制可能需要更详细地阅读项目文档和源代码。

sign-language-gesture-recognition Sign Language Gesture Recognition From Video Sequences Using RNN And CNN sign-language-gesture-recognition 项目地址: https://gitcode.com/gh_mirrors/si/sign-language-gesture-recognition

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柯璋旺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值