SSIMULACRA 2:提升图像感知质量评估的新标准
ssimulacra2 SSIMULACRA 2. Perceptual metric. 项目地址: https://gitcode.com/gh_mirrors/ss/ssimulacra2
项目基础介绍与编程语言
SSIMULACRA 2,全称为Structural SIMilarity Unveiling Local And Compression Related Artifacts,是由Cloudinary公司的Jon Sneyers开发的一款先进的图像质量评估工具。该项目致力于提供一种更为精准的主观视觉质量评分系统,特别针对压缩图片进行优化。项目主要采用C++作为核心编程语言,同时也融入了C、CMake和Shell脚本等其他语言元素以支持构建和管理流程。
核心功能
该工具基于多尺度结构相似性指数(MS-SSIM)的概念,并在感知相关的色彩空间(XYB)内进行了扩展。它引入了三种独特误差映射——SSIM图、‘块状/振铃’图和‘平滑/模糊’图——来全面捕捉质量变化。通过在六个不同尺度上计算这些误差,并结合1-范数和4-范数的加权求和,SSIMULACRA 2能够生成一个范围在-inf至100之间的分数,直观反映图像的主观质量级别。其设计考虑到了与JPEG、JPEG 2000、JPEG XL等多种压缩格式及人工扭曲下的图像匹配度。
最近更新的功能
截至最新的更新(约2023年4月),SSIMULACRA 2经历了参数调优,增强了与其他数据集的相关性。具体变更包括重新调整权重以更好地与其他感知度量标准保持一致,确保各组件值限定在0到1之间,保证SSIM公式的合理应用。此外,增加了对高失真情况下的误差分值映射优化,进一步改善了对不同类型的图像质量和压缩效果的评估能力。这些改进是基于大量主观评价数据训练而成,包括CID22、TID2013、KADID-10k和KonFiG-IQA等多个图像质量评估数据集的综合考量。通过这种复杂的调整过程,SSIMULACRA 2提高了其在多种场景下的预测准确性和相关性,成为了评估图像感知质量的一个强大工具。
ssimulacra2 SSIMULACRA 2. Perceptual metric. 项目地址: https://gitcode.com/gh_mirrors/ss/ssimulacra2
1026

被折叠的 条评论
为什么被折叠?



