SSIMULACRA 2:提升图像感知质量评估的新标准

SSIMULACRA 2:提升图像感知质量评估的新标准

ssimulacra2 SSIMULACRA 2. Perceptual metric. ssimulacra2 项目地址: https://gitcode.com/gh_mirrors/ss/ssimulacra2

项目基础介绍与编程语言

SSIMULACRA 2,全称为Structural SIMilarity Unveiling Local And Compression Related Artifacts,是由Cloudinary公司的Jon Sneyers开发的一款先进的图像质量评估工具。该项目致力于提供一种更为精准的主观视觉质量评分系统,特别针对压缩图片进行优化。项目主要采用C++作为核心编程语言,同时也融入了C、CMake和Shell脚本等其他语言元素以支持构建和管理流程。

核心功能

该工具基于多尺度结构相似性指数(MS-SSIM)的概念,并在感知相关的色彩空间(XYB)内进行了扩展。它引入了三种独特误差映射——SSIM图、‘块状/振铃’图和‘平滑/模糊’图——来全面捕捉质量变化。通过在六个不同尺度上计算这些误差,并结合1-范数和4-范数的加权求和,SSIMULACRA 2能够生成一个范围在-inf至100之间的分数,直观反映图像的主观质量级别。其设计考虑到了与JPEG、JPEG 2000、JPEG XL等多种压缩格式及人工扭曲下的图像匹配度。

最近更新的功能

截至最新的更新(约2023年4月),SSIMULACRA 2经历了参数调优,增强了与其他数据集的相关性。具体变更包括重新调整权重以更好地与其他感知度量标准保持一致,确保各组件值限定在0到1之间,保证SSIM公式的合理应用。此外,增加了对高失真情况下的误差分值映射优化,进一步改善了对不同类型的图像质量和压缩效果的评估能力。这些改进是基于大量主观评价数据训练而成,包括CID22、TID2013、KADID-10k和KonFiG-IQA等多个图像质量评估数据集的综合考量。通过这种复杂的调整过程,SSIMULACRA 2提高了其在多种场景下的预测准确性和相关性,成为了评估图像感知质量的一个强大工具。

ssimulacra2 SSIMULACRA 2. Perceptual metric. ssimulacra2 项目地址: https://gitcode.com/gh_mirrors/ss/ssimulacra2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明会泽Irene

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值