SNARF 项目使用教程
1. 项目目录结构及介绍
SNARF 项目的目录结构如下:
snarf/
├── assets/
├── config/
├── lib/
│ ├── smpl/
│ │ └── smpl_model/
│ ├── model/
│ ├── utils/
├── preprocess/
├── .gitignore
├── LICENSE
├── README.md
├── demo.py
├── download_data.sh
├── environment.yml
├── setup.py
├── test.py
└── train.py
目录结构介绍
- assets/: 存放项目相关的资源文件,如图片、视频等。
- config/: 存放项目的配置文件,用于配置项目的运行参数。
- lib/: 存放项目的核心代码库,包括模型定义、工具函数等。
- smpl/: 存放 SMPL 模型的相关文件。
- model/: 存放神经网络模型的定义文件。
- utils/: 存放各种工具函数和辅助代码。
- preprocess/: 存放数据预处理相关的代码。
- .gitignore: Git 忽略文件列表。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的说明文档。
- demo.py: 项目的演示脚本,用于展示项目的功能。
- download_data.sh: 下载数据集的脚本。
- environment.yml: 项目的 Conda 环境配置文件。
- setup.py: 项目的安装脚本。
- test.py: 项目的测试脚本。
- train.py: 项目的训练脚本。
2. 项目启动文件介绍
demo.py
demo.py 是 SNARF 项目的主要启动文件之一,用于演示项目的功能。通过运行该脚本,用户可以生成动画并查看结果。
使用方法
python demo.py expname=cape subject=3375 demo_motion_path=data/aist_demo/seqs +experiments=cape
expname: 实验名称。subject: 实验对象的编号。demo_motion_path: 动画序列的路径。+experiments: 实验配置。
train.py
train.py 是用于训练模型的启动文件。通过运行该脚本,用户可以训练自己的模型。
使用方法
python train.py subject=50002
subject: 训练对象的编号。
test.py
test.py 是用于测试模型的启动文件。通过运行该脚本,用户可以评估模型的性能。
使用方法
python test.py subject=50002
subject: 测试对象的编号。
3. 项目的配置文件介绍
environment.yml
environment.yml 是 Conda 环境配置文件,用于定义项目所需的依赖包和环境配置。
内容示例
name: snarf
channels:
- defaults
dependencies:
- python=3.8
- numpy
- pytorch
- ...
config/ 目录
config/ 目录下存放了项目的各种配置文件,用于配置项目的运行参数。
配置文件示例
# config/default.py
# 实验名称
expname = 'cape'
# 实验对象
subject = 3375
# 动画序列路径
demo_motion_path = 'data/aist_demo/seqs'
# 实验配置
experiments = 'cape'
通过修改这些配置文件,用户可以自定义项目的运行参数,以满足不同的需求。
642

被折叠的 条评论
为什么被折叠?



