CloudMapper 使用教程

CloudMapper 使用教程

cloudmapper CloudMapper helps you analyze your Amazon Web Services (AWS) environments. cloudmapper 项目地址: https://gitcode.com/gh_mirrors/cl/cloudmapper

1、项目介绍

CloudMapper 是由 Duo Security 开发的一个开源工具,旨在帮助用户分析和可视化 Amazon Web Services (AWS) 环境。通过生成交互式的网络图,CloudMapper 能够帮助用户快速了解 AWS 账户中的资源分布、网络拓扑以及潜在的安全风险。该项目的主要目的是提供一个直观的界面,使用户能够更好地理解和审计其 AWS 环境。

2、项目快速启动

环境准备

在开始之前,请确保您已经安装了以下依赖:

  • Python 3.x
  • AWS CLI
  • Git

安装步骤

  1. 克隆项目仓库

    git clone https://github.com/duo-labs/cloudmapper.git
    cd cloudmapper
    
  2. 安装依赖

    pip install -r requirements.txt
    
  3. 配置 AWS 凭证

    确保您已经配置了 AWS CLI,并且拥有访问 AWS 账户的权限。

    aws configure
    
  4. 生成网络图

    python cloudmapper.py collect --account my_account
    python cloudmapper.py report --account my_account
    python cloudmapper.py prepare --account my_account
    python cloudmapper.py webserver
    

    打开浏览器,访问 http://127.0.0.1:8000 即可查看生成的网络图。

3、应用案例和最佳实践

应用案例

  • 安全审计:通过 CloudMapper 生成的网络图,安全团队可以快速识别出哪些资源是公开暴露的,哪些资源之间存在潜在的通信风险,从而进行针对性的安全加固。

  • 架构优化:开发团队可以利用 CloudMapper 来评估当前 AWS 环境的复杂性和规模,识别出潜在的架构瓶颈,并进行优化。

最佳实践

  • 定期审计:建议定期运行 CloudMapper 来审计您的 AWS 环境,确保没有新的安全风险出现。

  • 自动化部署:可以考虑使用 AWS Fargate 或类似的服务来定期运行 CloudMapper,并将审计结果发送到 Slack 或其他通知渠道。

4、典型生态项目

  • Cartography:由 Lyft 开发的一个开源工具,用于可视化和分析云环境中的资源关系。

  • AWS Security Viz:一个用于生成 AWS 安全可视化图表的工具,帮助用户更好地理解其 AWS 环境中的安全配置。

通过结合这些工具,用户可以更全面地了解和管理其 AWS 环境,确保安全性和高效性。

cloudmapper CloudMapper helps you analyze your Amazon Web Services (AWS) environments. cloudmapper 项目地址: https://gitcode.com/gh_mirrors/cl/cloudmapper

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樊麒朋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值