Memhunter 项目安装与使用教程

Memhunter 项目安装与使用教程

memhunter Live hunting of code injection techniques memhunter 项目地址: https://gitcode.com/gh_mirrors/me/memhunter

1. 项目的目录结构及介绍

Memhunter 项目的目录结构如下:

memhunter/
├── conf/
│   └── ...
├── include/
│   └── ...
├── libs/
│   └── ...
├── src/
│   └── ...
├── utilities/
│   └── ...
├── appveyor.yml
├── .gitignore
├── LICENSE
├── README.md
├── memhunter.sln
├── memhunter.vcxproj
└── memhunter.vcxproj.filters

目录结构介绍:

  • conf/: 存放项目的配置文件。
  • include/: 存放项目所需的头文件。
  • libs/: 存放项目依赖的库文件。
  • src/: 存放项目的源代码文件。
  • utilities/: 存放项目使用的工具文件。
  • appveyor.yml: AppVeyor 持续集成配置文件。
  • .gitignore: Git 忽略文件配置。
  • LICENSE: 项目许可证文件。
  • README.md: 项目说明文档。
  • memhunter.sln: Visual Studio 解决方案文件。
  • memhunter.vcxproj: Visual Studio 项目文件。
  • memhunter.vcxproj.filters: Visual Studio 项目过滤器文件。

2. 项目的启动文件介绍

Memhunter 项目的启动文件是 memhunter.sln,这是一个 Visual Studio 解决方案文件。通过打开这个文件,可以在 Visual Studio 中加载整个项目,并进行编译和运行。

启动步骤:

  1. 打开 Visual Studio。
  2. 选择“文件” -> “打开” -> “项目/解决方案”。
  3. 导航到 memhunter.sln 文件并打开。
  4. 在 Visual Studio 中,选择“生成” -> “生成解决方案”来编译项目。
  5. 编译成功后,可以在 Visual Studio 中运行项目。

3. 项目的配置文件介绍

Memhunter 项目的配置文件主要存放在 conf/ 目录下。具体的配置文件可能包括以下内容:

  • appveyor.yml: 用于配置 AppVeyor 持续集成服务。
  • .gitignore: 用于配置 Git 忽略的文件和目录。
  • LICENSE: 项目的许可证配置。
  • README.md: 项目的说明文档,通常包含项目的使用说明和配置说明。

配置文件示例:

# appveyor.yml 示例
version: 1.0.{build}
image: Visual Studio 2019
branches:
  only:
    - master
install:
  - ps: Install-PackageProvider -Name NuGet -Force
  - ps: Install-Module -Name Pester -Force
build_script:
  - ps: .\build.ps1
test_script:
  - ps: Invoke-Pester -OutputFile TestResults.xml -OutputFormat NUnitXml

配置文件说明:

  • appveyor.yml: 配置了 AppVeyor 的构建和测试环境。
  • .gitignore: 指定了 Git 忽略的文件和目录,避免将不必要的文件提交到版本控制中。
  • LICENSE: 包含了项目的许可证信息,说明项目的使用条款。
  • README.md: 提供了项目的详细说明,包括安装、配置和使用方法。

通过以上步骤,您可以顺利地安装、配置和使用 Memhunter 项目。

memhunter Live hunting of code injection techniques memhunter 项目地址: https://gitcode.com/gh_mirrors/me/memhunter

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
AI实战-二手车价格数据集分析预测实例(含20个源代码+593.58 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共330.95 KB;数据大小:1个文件共593.58 KB。 使用到的模块: numpy pandas os matplotlib.pyplot seaborn warnings sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.OrdinalEncoder sklearn.impute.KNNImputer re sklearn.model_selection.train_test_split sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.metrics.mean_squared_error sklearn.metrics.r2_score lightgbm datetime.datetime optuna lightgbm.LGBMRegressor tqdm.tqdm sklearn.base.clone IPython.display.clear_output sklearn.model_selection.KFold matplotlib.colors.LinearSegmentedColormap xgboost.XGBRegressor lightgbm.log_evaluation lightgbm.early_stopping catboost.CatBoostRegressor sklearn.ensemble.StackingRegressor scipy.stats.kruskal sklearn.preprocessing.LabelEncoder lightgbm.LGBMClassifier sklearn.model_selection.cross_validate category_encoders.TargetEncoder autogluon.tabular.TabularPredictor catboost.Pool time sklearn.preprocessing.MinMaxScaler sklearn.pipeline.make_pipeline sklearn.model_selection.cross_val_score sklearn.base.BaseEstimator sklearn.base.TransformerMixin optuna.samplers.TPESampler tensorflow.keras keras.Sequential keras.layers keras.metrics.RootMeanSquaredError sklearn.model_selection.RandomizedSearchCV scipy.stats.randint sklearn.model_selection.GridSearchCV sklearn.decomposition.PCA cuml.manifold.TSNE datetime colorama.Fore colorama.Style sklearn.inspection.permutation_importance sklearn.pipeline.Pipeline lofo.LOFOImportance lofo.Dataset cudf pickle sklearn.metrics.mean_absolute_error sklearn.metrics.mean_absolute_percentage_error IPython.display.display sklearn.mixture.GaussianMixture sklearn.metrics.silhouette_score supervised.AutoML category_encoders sklearn.impute.IterativeImputer sklearn.impute.SimpleImputer sklearn.linear_model.LinearRegression sklearn.linear_model.ElasticNet sklearn.tree.DecisionTreeRegressor sklearn.ensemble.AdaBoostRegressor xgboost tensorflow.keras.models.Sequential tensorflow.keras
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樊麒朋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值