Bayesian-Analysis-with-Python-Second-Edition 项目教程

Bayesian-Analysis-with-Python-Second-Edition 项目教程

Bayesian-Analysis-with-Python-Second-Edition Bayesian Analysis with Python - Second Edition, published by Packt Bayesian-Analysis-with-Python-Second-Edition 项目地址: https://gitcode.com/gh_mirrors/ba/Bayesian-Analysis-with-Python-Second-Edition

1. 项目的目录结构及介绍

Bayesian-Analysis-with-Python-Second-Edition/
├── Chapter01/
├── Chapter02/
├── Chapter03/
├── Chapter04/
├── Chapter05/
├── Chapter06/
├── Chapter07/
├── Chapter08/
├── data/
├── LICENSE
├── README.md

目录结构介绍

  • Chapter01-Chapter08: 这些目录包含了每个章节的代码示例和相关文件。每个章节对应书中的一个部分,提供了实际的Python代码和数据分析示例。
  • data: 该目录可能包含项目所需的数据文件,用于代码示例和分析。
  • LICENSE: 项目的许可证文件,通常为MIT许可证。
  • README.md: 项目的介绍文件,包含了项目的基本信息、使用说明和相关链接。

2. 项目的启动文件介绍

在每个章节目录中,通常会有一个或多个Jupyter Notebook文件(.ipynb),这些文件是项目的启动文件。例如,Chapter01/目录中可能包含一个名为Chapter01.ipynb的文件,这是第一章的启动文件。

启动文件示例

# Chapter01.ipynb

该文件是第一章的启动文件,包含了本章节的所有代码示例和解释。你可以通过以下步骤启动和运行该文件:

1. 打开Jupyter Notebook。
2. 导航到`Chapter01/`目录。
3. 打开`Chapter01.ipynb`文件。
4. 逐个运行代码单元格,查看输出结果。

3. 项目的配置文件介绍

该项目没有明确的配置文件,因为它的主要目的是提供代码示例和教学材料。然而,如果你需要安装项目所需的Python库,可以在项目的根目录下创建一个requirements.txt文件,列出所有依赖项。

配置文件示例

# requirements.txt

以下是项目所需的Python库列表,你可以使用以下命令安装这些库:

```bash
pip install -r requirements.txt
ipython==7.0.1
jupyter==1.0
numpy==1.14.2
scipy==1.1.0
pandas==0.23.4
matplotlib==3.0.2
seaborn==0.9.0
arviz==0.3.1
pymc3==3.6

通过以上步骤,你可以顺利启动和配置Bayesian-Analysis-with-Python-Second-Edition项目,并开始学习和实践贝叶斯分析的相关内容。

Bayesian-Analysis-with-Python-Second-Edition Bayesian Analysis with Python - Second Edition, published by Packt Bayesian-Analysis-with-Python-Second-Edition 项目地址: https://gitcode.com/gh_mirrors/ba/Bayesian-Analysis-with-Python-Second-Edition

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樊麒朋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值