ESG-BERT 项目使用教程

ESG-BERT 项目使用教程

ESG-BERTDomain Specific BERT Model for Text Mining in Sustainable Investing项目地址:https://gitcode.com/gh_mirrors/es/ESG-BERT

1. 项目的目录结构及介绍

ESG-BERT 项目的目录结构如下:

ESG-BERT/
├── README.md
├── requirements.txt
├── data/
│   └── sample_data.csv
├── models/
│   └── esg_bert_model.py
├── notebooks/
│   └── Applying ESG-BERT on sustainability reports.ipynb
├── scripts/
│   └── train_model.py
└── config/
    └── config.yaml

目录介绍

  • README.md: 项目说明文件,包含项目的基本信息和使用指南。
  • requirements.txt: 项目依赖文件,列出了运行项目所需的Python包。
  • data/: 数据目录,存放示例数据文件。
  • models/: 模型目录,包含ESG-BERT模型的定义文件。
  • notebooks/: Jupyter Notebook目录,包含应用ESG-BERT模型的示例。
  • scripts/: 脚本目录,包含训练模型的脚本。
  • config/: 配置文件目录,包含项目的配置文件。

2. 项目的启动文件介绍

项目的启动文件是 notebooks/Applying ESG-BERT on sustainability reports.ipynb。这是一个Jupyter Notebook文件,用于演示如何使用ESG-BERT模型对可持续性报告进行文本分类。

启动文件内容概述

  • 导入必要的库: 导入Python库,如Tika和Hugging Face的transformers库。
  • 加载数据: 使用Tika库解析可持续性报告文档。
  • 加载ESG-BERT模型: 从Hugging Face加载预训练的ESG-BERT模型。
  • 文本分类: 应用ESG-BERT模型对解析后的文本进行分类。

3. 项目的配置文件介绍

项目的配置文件是 config/config.yaml。这个文件包含了项目运行所需的各种配置参数。

配置文件内容概述

  • 数据路径: 指定数据文件的路径。
  • 模型参数: 包含模型的超参数,如学习率、批大小等。
  • 训练参数: 包含训练过程的参数,如训练轮数、验证频率等。

通过修改这个配置文件,可以调整项目的运行参数,以适应不同的需求和环境。


以上是ESG-BERT项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。

ESG-BERTDomain Specific BERT Model for Text Mining in Sustainable Investing项目地址:https://gitcode.com/gh_mirrors/es/ESG-BERT

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晏易桥Orson

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值