NG-RANSAC神经引导RANSAC安装与使用指南

NG-RANSAC神经引导RANSAC安装与使用指南

ngransac项目地址:https://gitcode.com/gh_mirrors/ng/ngransac

1. 项目目录结构及介绍

NG-RANSAC 是一个基于Python,并利用PyTorch实现的神经网络引导的RANSAC算法,专为 fundamentalmatrix 估计设计。以下是该项目的基本目录结构及其简介:

  • images/: 包含用于演示脚本的一些示例图像。
  • models/: 存放预训练模型,以供快速应用或微调。
  • ngransac/: 这个目录包含了NG-RANSAC的C++扩展源代码,是执行核心算法的部分。
  • ngransac_demo.py: 主要的演示脚本,允许用户通过输入图像对来执行NG-RANSAC并查看结果。
  • demo.png: 展示了NG-RANSAC与传统RANSAC结果对比的示例输出图片。
  • ngransac_train_e2e.py: 训练NG-RANSAC端到端的脚本。
  • ngransac_train_init.py: 初始化NG-RANSAC网络的脚本。
  • ngransac_test.py: 批量测试NG-RANSAC在多个数据集上的脚本,适用于定量评估。
  • show_mean.py: 实用脚本,用于计算跨多个数据集的平均评估指标。
  • dataset.py: 定义了数据集类,用于访问预先计算好的对应关系,支持训练和测试过程。
  • network.py: 定义了被NG-RANSAC使用的网络结构。

2. 项目的启动文件介绍

  • ngransac_demo.py: 这是主要的互动点。通过运行这个脚本并提供必要的参数(如图像路径、特征提取方法、阈值等),用户可以测试NG-RANSAC在任意图像对上的性能。例如,使用命令 python ngransac_demo.py -img1 images/demo1.jpg -img2 images/demo2.jpg -orb -nf -1 -r 0.8 -fmat -t 1 可以提取ORB特征,应用Lowe's比值测试,然后以0.8的比值阈值过滤匹配项,并使用NG-RANSAC拟合基本矩阵,设定1像素的内点阈值。

3. 项目的配置文件介绍

虽然 NG-RANSAC 的配置更多地体现在脚本参数和环境设置上,而不是传统的配置文件形式,其主要配置和定制发生在以下几个方面:

  • 安装依赖:你需要手动管理Python依赖,如PyTorch (1.2.0) 和 OpenCV (3.4.2)。
  • 环境设置:编译C++扩展时,若OpenCV不是通过Conda安装在当前环境中,则需在setup.py中手动指定OpenCV库的头文件和库文件路径。
  • 运行时参数:通过调整ngransac_demo.py中的参数(如图像路径、特征类型、匹配准则和精度阈值)进行配置,这些都是动态配置而非静态配置文件内的设置。

注意事项

  • 在安装过程中确保您的开发环境已安装所需的Python版本和PyTorch、OpenCV等依赖包。
  • 编译C++扩展时,环境变量或直接在setup.py中正确指向OpenCV资源是关键步骤。
  • 脚本参数的灵活使用能够让您根据不同的任务场景调整NG-RANSAC的行为。

此指南提供了启动和自定义NG-RANSAC所需的关键步骤,帮助用户快速理解和运用这一强大的计算机视觉工具。

ngransac项目地址:https://gitcode.com/gh_mirrors/ng/ngransac

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪萌娅Gloria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值