NG-RANSAC神经引导RANSAC安装与使用指南
ngransac项目地址:https://gitcode.com/gh_mirrors/ng/ngransac
1. 项目目录结构及介绍
NG-RANSAC 是一个基于Python,并利用PyTorch实现的神经网络引导的RANSAC算法,专为 fundamentalmatrix 估计设计。以下是该项目的基本目录结构及其简介:
- images/: 包含用于演示脚本的一些示例图像。
- models/: 存放预训练模型,以供快速应用或微调。
- ngransac/: 这个目录包含了NG-RANSAC的C++扩展源代码,是执行核心算法的部分。
- ngransac_demo.py: 主要的演示脚本,允许用户通过输入图像对来执行NG-RANSAC并查看结果。
- demo.png: 展示了NG-RANSAC与传统RANSAC结果对比的示例输出图片。
- ngransac_train_e2e.py: 训练NG-RANSAC端到端的脚本。
- ngransac_train_init.py: 初始化NG-RANSAC网络的脚本。
- ngransac_test.py: 批量测试NG-RANSAC在多个数据集上的脚本,适用于定量评估。
- show_mean.py: 实用脚本,用于计算跨多个数据集的平均评估指标。
- dataset.py: 定义了数据集类,用于访问预先计算好的对应关系,支持训练和测试过程。
- network.py: 定义了被NG-RANSAC使用的网络结构。
2. 项目的启动文件介绍
- ngransac_demo.py: 这是主要的互动点。通过运行这个脚本并提供必要的参数(如图像路径、特征提取方法、阈值等),用户可以测试NG-RANSAC在任意图像对上的性能。例如,使用命令
python ngransac_demo.py -img1 images/demo1.jpg -img2 images/demo2.jpg -orb -nf -1 -r 0.8 -fmat -t 1可以提取ORB特征,应用Lowe's比值测试,然后以0.8的比值阈值过滤匹配项,并使用NG-RANSAC拟合基本矩阵,设定1像素的内点阈值。
3. 项目的配置文件介绍
虽然 NG-RANSAC 的配置更多地体现在脚本参数和环境设置上,而不是传统的配置文件形式,其主要配置和定制发生在以下几个方面:
- 安装依赖:你需要手动管理Python依赖,如PyTorch (1.2.0) 和 OpenCV (3.4.2)。
- 环境设置:编译C++扩展时,若OpenCV不是通过Conda安装在当前环境中,则需在
setup.py中手动指定OpenCV库的头文件和库文件路径。 - 运行时参数:通过调整
ngransac_demo.py中的参数(如图像路径、特征类型、匹配准则和精度阈值)进行配置,这些都是动态配置而非静态配置文件内的设置。
注意事项
- 在安装过程中确保您的开发环境已安装所需的Python版本和PyTorch、OpenCV等依赖包。
- 编译C++扩展时,环境变量或直接在
setup.py中正确指向OpenCV资源是关键步骤。 - 脚本参数的灵活使用能够让您根据不同的任务场景调整NG-RANSAC的行为。
此指南提供了启动和自定义NG-RANSAC所需的关键步骤,帮助用户快速理解和运用这一强大的计算机视觉工具。

157

被折叠的 条评论
为什么被折叠?



