harmonypy 使用教程

harmonypy 使用教程

harmonypy🎼 Integrate multiple high-dimensional datasets with fuzzy k-means and locally linear adjustments.项目地址:https://gitcode.com/gh_mirrors/ha/harmonypy

1、项目介绍

harmonypy 是一个用于整合多个高维数据集的算法,它是 Harmony 算法的 Python 实现。Harmony 算法由 Ilya Korsunsky 开发,旨在通过模糊 k-means 和局部线性调整来整合来自不同实验的单细胞 RNA-seq 数据。harmonypy 项目托管在 GitHub 上,由 slowkow 维护。

2、项目快速启动

安装

你可以使用 pip 来安装 harmonypy

pip install harmonypy

使用示例

以下是一个简单的使用示例,展示了如何加载数据并应用 harmonypy

import pandas as pd
from harmonypy import run_harmony

# 加载元数据
meta_data = pd.read_csv("data/meta.tsv.gz", sep="\t")
vars_use = ['dataset']

# 假设你已经有一个 PCA 结果的 AnnData 对象
# adata = ...

# 运行 Harmony
adata_harmony = run_harmony(adata, meta_data, vars_use)

3、应用案例和最佳实践

应用案例

harmonypy 的一个典型应用案例是整合来自不同捐赠者的单细胞 RNA-seq 数据。例如,研究人员可以使用 harmonypy 来消除数据集之间的批次效应,从而更准确地比较不同捐赠者的细胞类型。

最佳实践

  • 数据预处理:在使用 harmonypy 之前,确保数据已经进行了适当的预处理,包括质量控制、归一化和 PCA。
  • 选择变量:在运行 harmonypy 时,选择合适的变量(如批次信息)来调整数据。
  • 结果验证:整合后的数据应进行进一步的分析和验证,以确保批次效应已被有效消除。

4、典型生态项目

harmonypy 可以与其他单细胞分析工具集成,例如 scanpy。以下是一个使用 scanpyharmonypy 的示例:

import scanpy as sc
from harmonypy import run_harmony

# 读取数据
adata = sc.read_h5ad("data.h5ad")

# 运行 PCA
sc.pp.pca(adata)

# 运行 Harmony
adata_harmony = run_harmony(adata, adata.obs, ['batch'])

# 继续进行其他分析
sc.pp.neighbors(adata_harmony)
sc.tl.umap(adata_harmony)
sc.pl.umap(adata_harmony, color=['batch', 'cell_type'])

通过这种方式,harmonypy 可以无缝集成到现有的单细胞分析流程中,提供强大的数据整合功能。

harmonypy🎼 Integrate multiple high-dimensional datasets with fuzzy k-means and locally linear adjustments.项目地址:https://gitcode.com/gh_mirrors/ha/harmonypy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龚阔千Quenna

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值